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Introduction and Installation






1. Introduction

Amber is the collective name for a suite of programs that allow users to carry out molecular dynamics simu-
lations, particularly on biomolecules. None of the individual programs carries this name, but the various parts
work reasonably well together, and provide a powerful framework for many common calculations.[1, 2] The term
Amber is also used to refer to the empirical force fields that are implemented here.[3, 4] It should be recognized,
however, that the code and force field are separate: several other computer packages have implemented the Amber
force fields, and other force fields can be implemented with the Amber programs. Further, the force fields are in
the public domain, whereas the codes are distributed under a license agreement.

The Amber software suite is divided into two parts: AmberTools20, a collection of freely available programs
mostly under the GPL license, and Amber20, which is centered around the pmemd simulation program, and which
continues to be licensed as before, under a more restrictive license. Amber20 represents a significant change from
the most recent previous version, Amber18. (We have moved to numbering Amber releases by the last two digits
of the calendar year, so there are no odd-numbered versions.) Please see http://ambermd.org for an overview
of the most important changes.

AmberTools is a set of programs for biomolecular simulation and analysis. They are designed to work well
with each other, and with the “regular” Amber suite of programs. You can perform many simulation tasks with
AmberTools, and you can do more extensive simulations with the combination of AmberTools and Amber itself.
Most components of AmberTools are released under the GNU General Public License (GPL). A few components
are in the public domain or have other open-source licenses. See the README file for more information.

Everyone should read (or at least skim) this chapter. Even if you are an experienced Amber user, there may be
things you have missed, or new features, that will help. There are also tips and examples on the Amber Web pages
at http://ambermd.org. Although Amber may appear dauntingly complex at first, it has become easier to use over
the past few years, and overall is reasonably straightforward once you understand the basic architecture and option
choices. In particular, we have worked hard on the tutorials to make them accessible to new users. Thousands of
people have learned to use Amber; don’t be easily discouraged.

If you want to learn more about basic biochemical simulation techniques, there are a variety of good books to
consult, ranging from introductory descriptions,[5—7] to standard works on liquid state simulation methods,[8—10]
to multi-author compilations that cover many important aspects of biomolecular modelling.[11-15] Looking for
"paradigm" papers that report simulations similar to ones you may want to undertake is also generally a good idea.
If you are new to this field, Chapter 14 provides a basic introduction to force fields, along with details of how the
parameters are encoded in Amber files.

1.1. Information flow in Amber

Understanding where to begin in AmberTools is primarily a problem of managing the flow of information in
this package — see Fig. 1.1. You first need to understand what information is needed by the simulation programs
(sander, pmemd, mdgx or nab). You need to know where it comes from, and how it gets into the form that these
programs require. This section is meant to orient the new user and is not a substitute for the individual program
documentation.

Information that all the simulation programs need (see the circles in Fig. 1.1):

1. Cartesian coordinates for each atom in the system. These usually come from X-ray crystallography, NMR
spectroscopy, or model-building. They should generally be in Protein Data Bank (PDB) format. The program
LEaP provides a platform for carrying out many of these modeling tasks, but users may wish to consider
other programs as well. Generally, editing of these files is needed, and the pdb4amber script can do some of
this.

13
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pdb4amber

antechamber,
pyMSMT,
mdgx,
LEaP

proftop
profcrd

parmed

sander,
mdgx,
pmemd

NMR or
XRAY info

MMPBSA.py, mdout_analyzer,
FEW cpptraj

Figure 1.1.: Basic information flow in Amber

. Topology: Connectivity, atom names, atom types, residue names, and charges. This information comes from

the database, which is found in the SAMBERHOME/dat/leap/lib directory, and is described in Chapter 3. It
contains topology for the standard amino acids as well as N- and C-terminal charged amino acids, DNA,
RNA, and common sugars and lipids. Topology information for other molecules (not found in the standard
database) is kept in user-generated “residue files”, which are generally created using antechamber.

. Force field: Parameters for all of the bonds, angles, dihedrals, and atom types in the system. The standard

parameters for several force fields are found in the SAMBERHOME/dat/leap/parm directory; see Chapter 3
for more information. These files may be used “as is” for proteins and nucleic acids, or users may prepare
their own files that contain modifications to the standard force fields.

. Once the topology and coordinate files (often called prmtop and prmcrd, but any legal file names can be

used) are created, the parmed script can be used to examine and verify these, and to make modifications. In
particular, the checkValidity action will flag many potential problems.

. Commands: The user specifies the procedural options and state parameters desired. These are specified in

input files (named mdin by default) or in “driver” programs written in the NAB language.



1.1. Information flow in Amber

1.1.1. Preparatory programs

LEaP is the primary program to create a new system in Amber, or to modify existing systems. It is available as
the command-line program tleap or the GUI xleap. It combines the functionality of prep, link, edit and parm
from much earlier versions of Amber.

pdb4amber generally helps in preparing pdb-format files coming from other places (such as resb.org) to be com-
patible with LEaP.

parmed provides a simple way to extract information about the parameters defined in a parameter-topology file. It
can also be used to check that the parameter-topology file is valid for complex systems (see the checkValidity
command), and it can also make simple modifications to this file.

antechamber is the main program to develop force fields for small organic molecules (e.g., drugs, modified amino
acids) using a version of the general Amber force field (GAFF). These can be used directly in LEaP, or can
serve as a starting point for further parameter development.

MCPB.py provides a means to build, prototype, and validate MM models of metalloproteins and organometallic
compounds. It uses the bonded plus electrostatics model to expand existing pairwise additive force fields.
It is a reimplementation of MCPB in Python, with a more efficient workflow and many modeling processes
from previous versions incorporated automatically.

IPMach.py provides a tool to facilitate the parameterization of nonbonded models (12-6 LJ model and 12-6-4
LJ-type model) for ions.

mdgx allows the generation of bonded force field parameters for any molecule by fitting to quantum data.

packmol-memgen provides a simple way to generate membrane systems, with or without protein, by orient-
ing input proteins with Memembed and using Packmol as the packing engine. It can handle complex
lipid mixtures, as well as multi-bilayer systems. The output is compatible with Amber through charmm-
lipid2amber.py.

1.1.2. Simulation programs

sander (part of AmberTools) is the basic energy minimizer and molecular dynamics program. This program
relaxes the structure by iteratively moving the atoms down the energy gradient until a sufficiently low average
gradient is obtained. The molecular dynamics portion generates configurations of the system by integrating
Newtonian equations of motion. MD will sample more configurational space than minimization, and will
allow the structure to cross over small potential energy barriers. Configurations may be saved at regular
intervals during the simulation for later analysis, and basic free energy calculations using thermodynamic
integration may be performed. More elaborate conformational searching and modeling MD studies can also
be carried out using the sander module. This allows a variety of constraints to be added to the basic force
field, and has been designed especially for the types of calculations involved in NMR, Xray or cryo-EM
structure refinement.

pmemd (part of Amber) is a version of sander that is optimized for speed and for parallel scaling; the pmemd.cuda
variant runs on GPUs. The name stands for “Particle Mesh Ewald Molecular Dynamics,” but this code can
now also carry out generalized Born simulations. The input and output have only a few changes from sander.

gem.pmemd (part of AmberTools) is a (CPU-only) variant of the pmemd program that is designed for calculations
using “advanced” force fields, such as AMOEBA[16] and GEM.[17]
1.1.3. Analysis programs

mdout_analyzer.py is a simple-to-run Python script that will provide summaries of information that is in the
output files from sander or pmemd.
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cpptraj is the main trajectory analysis utility (written in C++) for carrying out superpositions, extractions of
coordinates, calculation of bond/angle/dihedral values, atomic positional fluctuations, correlation functions,
analysis of hydrogen bonds, etc. See Chap. 32 for more information.

pytraj is a Python wrapper for cpptraj. It introduces additional flexibility into data analysis by combining with
Python’s rich ecosystems (such as numpy, scipy, and ipython-notebook).

pbsa is an analysis program for solvent-mediated energetics of biomolecules. The pbsa.cuda variant runs on
GPUs. It can be used to perform both electrostatic and non-electrostatic continuum solvation calculations
with input coordinate files from molecular dynamics simulations and other sources (in the pqr format). It
also supports visualization of solvent-mediated electrostatic potentials in various visualization programs.
See Chap. 6 for more information.

MMPBSA.py is a python script that automates energy analysis of snapshots from a molecular dynamics simulation
using ideas generated from continuum solvent models. (There is also an older perl script, called mm_pbsa.pl,
that has similar functionality.)

FEW (Free energy workflow) automates free energy calculations of protein-ligand binding using TI, MM/PBSA-
type, or LIE calculations.

1.2. List of programs

Amber is comprised of a large number of programs designed to aid you in your computational studies of chemical
systems, and the number of released tools grows regularly. This section provides a list of the main programs
included with AmberTools. Each program included in the suite is listed here with a very brief description of its
main function along with a reference to its documentation. For most programs executing it without arguments
prints the usage statement.

AddToBox A program for adding solvent molecules to a crystal cell. See Subsection 18.3.

amb2chm_par.py A program for converting AMBER dat and/or frcmod file(s) into CHARMM PAR file. SeeSub-
section 14.2.4.

amb2chm_psf_crd.py A program for converting AMBER prmtop and inpcrd files into CHARMM PSF and CRD
files. SeeSubsection 14.2.4.

amb2gro_top_gro.py A program for converting AMBER prmtop and inpcrd files into GROMACS top and gro
files. SeeSubsection 14.2.4.

CartHess2FC.py A program to derive the force constants based on Cartesian Hessian matrix using Seminario
method. See Subsection 17.2.5.

car_to_files.py A program program to generate the mol2 and PDB files based on the car file. SeeSubsection
17.2.8.

ChBox A program for changing the box dimensions of an Amber restart file. See Subsection 18.4.

IPMach.py A python program for facilitating the parameterization of the nonbonded models of ions. See Subsec-
tion 17.2.2.

MCPB.py A python version of MCPB with optimized workflow. See Subsection 17.2.1.

MMPBSA.py A program to post-process trajectories to calculate binding free energies according to the MM/PBSA
approximation. See Chapter 34.

mol2rtf.py A program for converting mol2 file into CHARMM RTF file. SeeSubsection 17.2.9.

OptC4.py optimizes the C4 terms in the metal-site-complex of a protein system. See Subsection 17.2.4.
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PdbSearcher.py a python version of Pdbsearcher, a program in MTK++. See Subsection 17.2.3.
PropPDB A program for propagating a PDB structure. See Subsection 18.2

ProScrs.py A program for cutting and capping the protein segment into clusters. SeeSubsection 17.2.7.
UnitCell A program for recreating a crystallographic unit cell from a PDB structure. See Subsection 18.1

amibcc A program called by antechamber to calculate AM1-BCC charges during ligand parametrization. It
can be used as a standalone program, with the options printed when you enter the program name with no
arguments. See Section 15.3

ambpdb A program to convert an Amber system (prmtop and inpcrd/restart) into a PDB, MOL2, or PQR file. See
Section 31.1

ante-MMPBSA.py A program to create the necessary, self-consistent prmtop files for MMPBSA with a single
starting topology file. See Subsection 34.2.2

antechamber A program for parametrizing ligands and other small molecules. See Chapter 15

atomtype A program called by antechamber to judge the atom types in an input structure. It can be used as a
standalone program. See Section 15.3

bondtype A program called by antechamber to judge what types of bonds exist in a given input structure. It can
be used as a standalone program. See Section 15.3

ceinutil.py A program to create a constant Redox Potential input (cein) file. See Section 25.1

cestats A program that computes redox state statistics from constant Redox Potential simulations. See Section
25.6

charmmlipid2amber.py A script that converts a PDB created with the CHARMM-GUI lipid builder into one
recognized by Amber and AmberTools programs.

cpinutil.py A program to create a constant pH input (cpin) file. See Section 24.2

cpeinutil.py A program to create a constant pH and Redox Potential input (cpein) file.

cpptraj A versatile program for trajectory post-processing and data analysis. See Chapter 32

cphstats A program that computes protonation state statistics from constant pH simulations. See Section 24.7
elsize A program that estimates the effective electrostatic size of a given input structure. See Section 4.2.1
espgen A program called by antechamber to generate ESP files during ligand or small molecule parametrization.
espgen.py A python version of espgen. See Subsection 17.2.6.

finddgref.py A program that automatically finds the value of Delta G reference necessary for constant pH and
constant Redox Potential simulations. See Subsection 24.5.1

fixremdcouts.py A program that sorts CPout and/or CEout files from any Replica Exchange simulation, including
MultiD-REMD. See Subsection 23.3.9.4

fitpkaeo.py A program that automatically fits the pKa or standard Redox Potential value of all titratable residues
starting from the output of cphstats or cestats for multiple CPout or CEout files.

ffgbsa A program that calculates MM/GBSA energies as part of the amberlite package.
FEW.pl A program to automate the workflow for free energy calculations. See Chapter 35

gbnsré A program to compute a surface-area-based Generalized Born solvation free energy. See Section 5
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genremdinputs.py A program that generates the input files (mdins, groufile and remd-file) for any Replica Ex-
change simulation, including MultiD-REMD. See Subsection 23.3.3

hcp_getpdb A program that adds necessary sections to a topology (prmtop) file so it can be used for the HCP GB
approximation. See Section 39.5

makeANG_RST A program to create angle restraints for use with sander’s nmropt=1 facility.
makeCHIR_RST A program to create chiral restraint file for use with sander’s nmropt=1 facility

makeDIP_RST.cyana A program to make restraints based on dipole information from CYANA for use with
sander’s nmropt=1 facility

makeDIST_RST A program to make distance restraints for use with sander’s nmropt=1 facility
mdgx An explicit solvent, PME molecular dynamics engine. See Chapter 16

mdout_analyzer.py A script that allows you to rapidly analyze and graph data from sander/pmemd output files.
See Section 31

metalpdb2mol2.py A script that converts PDB files of metal ions to mol2 files, specifically used for MCPB.py
modeling. See Subsection 17.2.10

mm_pbsa.pl Older perl script for performing MM/PBSA calculations. New users are encouraged to use MMPBSA..py
instead.

mm_pbsa_statistics.pl Complementary script to mm_pbsa.pl to compute MM/PBSA statistics from a completed
mm_pbsa calculation.

mm_pbsa_nabnmode Program for performing minimizations and normal mode analyses on biomolecules through
mm_pbsa.pl.

mmpbsa_py_energy A NAB program written to calculate energies for MMPBSA using either GB or PB solvent
models. It can be used as a standalone program that mimics the imin=5 functionality of sander, but it is
called automatically inside MMPBSA. See MMPBSA mdin files as example input files for this program.
Providing the —help or -h flags prints the usage message.

mmpbsa_py_nabnmode A NAB program written to calculate normal mode entropic contributions for MMPBSA.
This can really only be used by MMPBSA.

molsurf A program that calculates a molecular surface area based on input PQR files and a probe radius.

nab Stands for Nucleic Acid Builder. NAB is really a compiler that provides a convenient molecular programming
language loosely based on C. See Chapter 38 and other related chapters.

nfe-umbrella-slice A program to process the biasing potential generated in NFE modules. See Subsection 23.4.8

nmode An outdated program to compute normal modes for biomolecules. You are encouraged to use NAB in-
stead. See Section 39.1

packmol-memgen A workflow for generating membrane simulation systems. See 12.6
mdgx Improves force field parameters by fitting to quantum data. See Chapter 16

parmchk2 A program that analyzes an input force field library file (mol2 or amber prep), and extracts relevant
parameters into an frcmod file. See Subsection 15.1.2

parmed A program for querying and manipulating prmtop files. See Section 14.2

pbsa A program for computing electrostatic and non-electrostatic continuum solvation free energies. See Chapter
6
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pbsa.cuda A GPU-accelerated version of pbsa. See Chapter 6

pdb4amber A program to prepares PDB files for use in LEaP. See Section 12.4

pmemd A performance- and parallel-optimized dynamics engine implementing a subset of sander’s functionality
pmemd.cuda A GPU-accelerated version of pmemd

prepgen A program used as part of antechamber that generates an Amber prep file. See Section 15.3

pytraj A Python program binding to cpptraj. See Section 33

reduce A program for adding or removing hydrogen atoms to a PDB. See Section 12.5

residuegen A program to automate the generation of an Amber residue template (i.e. Amber prep file). See
Subsection 15.4.3

respgen A program called by antechamber to generate RESP input files. See Section 15.3
rismid A 1D-RISM solver. See Section 7.4
rism3d.snglpnt A 3D-RISM solver for single point calculations. See Section 7.6

sander The main engine used for running molecular simulations with Amber. Originally an acronym standing for
Simulated Annealing with Nmr-Derived Energy Restraints.

saxs_rism A program to compute small (wide) angle X-ray scattering curve from 3D-RISM output
saxs_md A program to compute small (wide) angle X-ray scattering curve from MD trajectories
sqm Semiempirical (or Stand-alone) Quantum Mechanics solver. See Chapter 9

tleap A script that calls teLeap with specific setup command-line arguments. See Chapter 13

xleap A script that calls xalLeap with specific setup command-line arguments. See Chapter 13

xparmed A graphical front-end to ParmEd functionality (i.e., parameter file editing and querying). See Section
14.2
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2.1. Basic installation guide

This chapter gives an overview of how to install and test your distribution. Note that the procedure is different
from earlier versions of Amber, relying on CMake rather than make. Once you have downloaded the distribution
files, do the following:

1. First, extract the files in some location (we use /home/xxxx as an example here, but you can install anywhere
that you have write permissions):

cd /home/xxxx
tar xvfj AmberTools20.tar.bz2 # (Note: extracts in an
# “amber20_ src” directory)
tar xvfj Amber20.tar.bz2 # (only if you have licensed Amber 20!)

2. Next, you may need to install some compilers and other libraries. Details depend on what OS you have,
and what is already installed. Package managers can greatly simplify this task. For lists of requirements for
Mac OSX and for many variants of Linux, please visit ambermd.org/Installation.php. In particular, you will
need to have cmake in your PATH. A restriction is that you cannot use the cmake you obtain from a conda
distribution you may have; you will need to use a package manager, or download it from https://cmake.org/.
If you have an existing miniconda distribution, please remove it from your PATH while building Amber.

3. Building with cmake: The Amber development team has recently moved our build system to cmake, with
the conversion being spearheaded by Jamie Smith.
The basic rationale for the move, and instructions on using cmake to build Amber, are at
* ambermd.org/pmwiki/index.php/Main/CMake-Quick-Start
* ambermd.org/pmwiki/pmwiki.php/Main/CMake-Common-Options
e Section 2.2, below.

For most users, the options chosen in the sample script (below) should be OK. Note that with cmake, the
“source” directory (where you extracted the files,) must be different from the installation directory. Thus,
make sure that -DCMAKE_INSTALL_PREFIX is not set to amber20_src in the run_cmake script.

cd amber20_src/build

# optional: edit the run cmake script to make any needed changes;
# most users should not need to do this.

./run_cmake

Next, build and install the code:

make install

4. The installation step will create a resource file amber.sh at your installation directory. This script will set up
your shell environment correctly for Amber:

source /home/xxxx/amber20/amber.sh # for bash, zsh, ksh, etc.

Adding these commands to your login resource file (e.g., ~/.bashrc, ~/.zshrc, etc.) will set up your environ-
ment every time you start a new shell. In particular, it sets the AMBERHOME environment variable, which
is needed for a number of workflows involving Amber. [There is a similar script, amber.csh, for those (few)
who use a C-shell as their interactive script.]
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5. This can be followed by a testing phase. If you have -DINSTALL_TESTS=TRUE in your cmake invocation,
then you can do the following:

cd $AMBERHOME # (this was set in step 4, above)
make test.serial

which will run tests and will report successes or failures.

Where "possible FAILURE" messages are found, go to the indicated directory under $AMBERHOME /AmberTools/test
or $AMBERHOME/test, and look at the "*.dif" files. Differences should involve round-off in the final digit

printed, or occasional messages that differ from machine to machine (see below for details). As with compi-

lation, if you have trouble with individual tests, you may wish to comment out certain lines in the Makefiles

(i.e., SAMBERHOME /AmberTools/test/Makefile Or $AMBERHOME/test/Makefile), and/or go directly to

the test subdirectories to examine the inputs and outputs in detail. For convenience, all of the failure mes-

sages and differences are collected in the SAMBERHOME/logs directory; you can quickly see from these if

there is anything more than round-off errors.

The nature of molecular dynamics is such that the course of the calculation is very dependent on the order
of arithmetical operations and the machine arithmetic implementation, i.e., the method used for round-off.
Because each step of the calculation depends on the results of the previous step, the slightest difference
will eventually lead to a divergence in trajectories. As an initially identical dynamics run progresses on
two different machines, the trajectories will eventually become completely uncorrelated. Neither of them
are "wrong;" they are just exploring different regions of phase space. Hence, states at the end of long
simulations are not very useful for verifying correctness. Averages are meaningful, provided that normal
statistical fluctuations are taken into account. "Different machines" in this context means any difference in
floating point hardware, word size, or rounding modes, as well as any differences in compilers or libraries.
Differences in the order of arithmetic operations will affect round-off behavior; (a + b) + ¢ is not necessarily
the same as a + (b + c). Different optimization levels will affect operation order, and may therefore affect
the course of the calculations.

All initial values reported as integers should be identical. The energies and temperatures on the first cycle
should be identical. The RMS and MAX gradients reported in sander are often more precision sensitive
than the energies, and may vary by 1 in the last figure on some machines. In minimization and dynamics
calculations, it is not unusual to see small divergences in behavior after as little as 100-200 cycles.

Note: If you have untarred the amber20.tar.bz2 file, then steps 1-6 will install and test both AmberTools
and Amber; otherwise it will just install and test AmberTools. If you license Amber later, just come back and
repeat steps 1-6 again.

6. If you are new to Amber, you should look at the tutorials (available at https://ambermd.org/tutorials)
and this manual in order to become familiar with the Amber features and functionalities.

7. Installation instructions for the GPU-accelerated versions of pmemd, cpptraj and pbsa are available in Sec-
tion 20.6.5.

8. In order to compile the parallel (MPI) version of Amber, follow these steps (after successfully installing the
serial version).

a) You must first ensure that you have installed MPI and that mpicc and mpif90 are in your PATH. Some
MPI installations are tuned to particular hardware (such as InfiniBand), and you should use those
versions if you have such hardware. Most people can use standard versions of either mpich or
openmpi obtained from a package manager, but these must correspond to the compilers you are using.
For many users, especially for Mac OSX, the easiest approach is the following:

cd $AMBERHOME/AmberTools/src
./configure mpich <compiler>

This will build the mpich MPI stack with what is needed for Amber, and install it in SAMBERHOME.
If you wish, you can replace configure_mpich with configure_openmpi above. (For MacOSX, use clang
as the compiler, unless you are using GNU compilers you intalled yourself).
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b) Then do the following:

cd /home/xxxx/amber20_ src/build

# edit the run_cmake script to set -DMPI=TRUE

./run_cmake

make install

# To run tests: Note the value below may depend on your MPI implementation
export DO_PARALLEL="mpirun -np 2"

cd $AMBERHOME

source amber.sh

make test.parallel

# Note, some tests, like the replica exchange tests, require more
# than 2 threads, so we suggest that you test with either 4 or 8
# threads as well

export DO_PARALLEL="mpirun -np 4"

make test.parallel

Some notes about the parallel programs in AmberTools:

a) The MPI version of nab is called mpinab, by analogy with mpicc or mpif90: mpinab is a compiler
that will produce an MPI-enabled executable from source code written in the NAB language. Before
compiling mpinab, be sure that you are familiar with the serial version of nab and that you really need a
parallel version. If you have shared-memory nodes, the OpenMP version might be a better alternative.
(Note that mpinab is primarily designed to write driver routines that call MPI versions of the energy
functions; it is not set up to write your own, novel, parallel codes.)

b) The MPI version of MMPBSA.py is called MMPBSA.py.MPI, and requires the package mpi4py to run.
If it is not present in your Python standard library already, it will be built along with MMPBSA.py.MPI
and placed in the $aMBERHOME prefix. If you have problems with MMPBSA.py.MPI, see if you get
the same problems with the serial version, MMPBSA.py, to see if it is an issue with the parallel
version or MMPBSA.py in general. Because we do not make or maintain the mpi4py source code,
MMPBSA.py.MPI will not be available on platforms on which mpi4py cannot be built.

2.2. The cmake build system in Amber

This section will walk you through performing certain common tasks with the CMake build system. Note: this
is fairly advanced information; for a more gentle introduction, please visit these pages:

e CMake Quick Start Guide

¢ CMake Common Options

2.2.1. Using MPI and OpenMP

MPI and OpenMP provide different methods of parallelizing Amber -- MPI at the process level, and OpenMP at
the thread level. MPI takes the form of one or more libraries that Amber needs to link with, while OpenMP requires
compiler support and is activated by a specific compiler flag. If you are working in a high-performance computing
environment, then there will usually be a specific system MPI installation compatible with your hardware that you
are supposed to use. Make sure to find out what that is and where it’s installed before going any further.

You can enable MPI in the CMake build system by passing the -DMPI=TRUE flag. This will enable use of
MPI in all programs that support it. For each of these programs, the standard (serial) version will still be built,
and an additional version with MPI support, usually identified by the ".MPI" suffix appended to the name, will be
compiled.

Traditionally, MPI is integrated into programs’ build systems by telling them to use special "compiler wrappers"
that automatically apply the needed flags and libraries for MPI before calling the real compiler. However, Amber
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does not use these, since it would make it impossible to compile executables without MPI support. Instead,
Amber makes use of CMake’s FindMPI module, which extracts the compiler flags from the MPI wrappers and
lets CMake use them only where needed. By default, FindMPI will search for MPI compiler wrappers (e.g.
mpicc, mpicxx, or mpif95) on your PATH and use the settings from the first one it finds. If you want to select a
different MPI implementation, you can define (-D) the variables MPI_C_COMPILER, MPI_CXX_COMPILER,
and MPI_Fortran_COMPILER to point to the MPI wrappers for their respective languages. Or, with CMake >=
3.9 installed, you can define MPIEXEC_EXECUTABLE to point to the location of a mpiexec executable, and
CMake will attempt to find the MPI that is installed in the same directory as it. For even more information, Refer
to Cmake’s FindMPI docs.

OpenMP can be enabled using the -DOPENMP=TRUE, and thankfully the process for configuring it is not as
convoluted. CMake is aware of the needed OpenMP flags for all supported compilers and will automatically find
one that works. If none is available, an error will be printed. Similarly to MPI, once OpenMP is enabled an
alternate version of all supported programs will be made that has a ".OMP" suffix.

2.2.2. Using CUDA

CUDA is NVidia’s software development kit for creating custom applications that run on NVidia GPUs. Amber
primarily uses CUDA in pmemd.cuda, but it’s also used to accelerate several other applications in AmberTools,
such as pbsa and cpptraj. You can enable CUDA in the CMake build system using -DCUDA=TRUE. This will
build CUDA versions of all applications that support it. MPI CUDA versions will also be built if MPI is enabled.

Currently Amber supports CUDA versions from 7.5 to 10.2 inclusive. However, older versions are less well
tested and more likely to cause issues, and you may also run into trouble with the CUDA SDK being incompatible
with newer compilers on your machine. So, it’s better to use one of the newer CUDA versions if possible. Note
that the compilation of complex CUDA code such as Amber’s is extremely CPU and memory intensive, so CUDA
builds are much slower than those of other languages. It is not abnormal for the compilation of a single source file
to take several minutes, and for the compilation of all of pmemd.cuda to take close to an hour.

By default, CMake will search for the CUDA compiler executable (nvcc) on your PATH and use the CUDA
installation associated with it. To specify a certain install location, define the CUDA_TOOLKIT_ROOT_DIR
variable, e.g. -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-8.0. The Amber build system uses CMake’s
legacy FindCUDA module and will continue to for the forseeable future. So, information related to CUDA that is
for newer versions of CMake may not be accurate. Instead, refer to the FindCUDA docs for infornation.

Starting with Amber 20, Amber supports use of the NVidia NCCL library for communications between mul-
tiple GPUs, which an provide a performance improvement over plain MPI. If the library is enabled (using -
DNCCL=TRUE), then it will be activated when pmemd.MPI.cuda is run on 3 or more GPUs.

2.2.3. Controlling External Libraries

Amber can use, for one purpose or another, a great variety of third-party libraries. Some, such as NetCDF,
FFTW, and boost, are core components of many programs and as such must be enabled for the build to succeed.
Others are only optional and Amber can work just fine without them. The complete description of what these
libraries do and how to use them is too complex for here and is left to the relevant sections of the manual. Instead,
this section will instead focus on the build system’s tools for managing them.

After the configuration finishes, the build system will print a build report showing all libraries used. Here’s an
example from my system:

- 3rd Party Libraries
————— building bundled:
—— ucpp - used as a preprocessor for the NAB compiler

—— netcdf-fortran - for creating trajectory data files from Fortran
—— pnetcdf - used by cpptraj for parallel trajectory output

—-— readline - used for the console functionality of cpptraj

—— xblas - used for high-precision linear algebra calculations

—- mpi4py - MPI support library for MMPBSA.py

----- using installed:
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—— arpack - for fundamental linear algebra calculations

—— netcdf - for creating trajectory data files

—— fftw - used to do Fourier transforms very quickly

—— apbs - used by Sander as an alternate Poisson-Boltzmann equation solver
—- zlib - for various compression and decompression tasks

—— libbz2 - for bzip2 compression in cpptraj

—— plumed - used as an alternate MD backend for Sander

—— libm - for fundamental math routines if they are not contained in the C library
—— mkl - alternate implementation of lapack and blas that is tuned for speed
—— perlmol - chemistry library used by FEW

—- boost - C++ support library

—— nccl - NVIDIA parallel GPU communication library

—— mbx - computes energies and forces for pmemd with the MB-pol model

—— blas - for fundamental linear algebra calculations

—— lapack - for fundamental linear algebra calculations

—-— c9x-complex - used as a support library on systems that do not have C99 complex.h support
—— lio - used by Sander to run certain QM routines on the GPU

—— pupil - used by Sander as an alternate user interface

There are a lot of important details in this report. The "canonical" name of each library is listed, along with
its description. You’ll also notice that each library is listed as either "bundled", "installed", or "disabled". This
indicates where the build system found each library.

With some exceptions, Amber will automatically find and use libraries it finds on the system, marking them as
installed. You’ll see output from these detections earlier in the build, with a message explaining why it couldn’t
find each library that is missing and what info it needs to locate it. If you don’t need the library active you can
ignore these messages, but otherwise you can use that information to determine what variables to define. For
example, if you saw this output:

—— Could NOT find PnetCDF_C (missing: PnetCDF_C_LIBRARY PnetCDF_C_INCLUDE_DIR)
you could help CMake find the library with the following command:

cmake <path to source> -DPnetCDF_C_LIBRARY=<path to libpnetcdf.so> \
-DPnetCDF_C_INCLUDE_DIR=<path to folder containing pnetcdf.h>

To find libraries when the paths aren’t specified directly, CMake uses a specific search path which generally con-
tains all the system directories. But what if you have certain libraries installed to a nonstandard directory? The
easiest way to help CMake find those libraries is by defining the variable CMAKE_PREFIX_PATH. This can be
set to one path or a semicolon-separated list, and each of these paths will be searched like a standard Unix prefix:
<path>/bin for programs, <path>/lib for libraries, and <path>/include for headers. If you’ve used Autoconf build
systems before this is similar to the --prefix option, though it does not control the install directory.

Unlike many other CMake build systems, Amber is smart enough to automatically find and use new libraries
that have been installed on the system after the initial configuration has been run. So, you should be able to pick
up new libraries just by running cmake on a previously configured build directory. However, there are still some
situations that will require you to delete and recreate the build directly completely, such as if the build or source
directory is moved or if an external library is deleted or moved to a new location.

For many libraries which are required and are not commonly found on people’s systems, Amber provides bun-
dled versions to make users’ lives easier. These bundled versions are automatically compiled and installed along
with Amber, and should work seamlessly. They also are guaranteed to get built with the same environment and
settings as Amber, removing a common source of problems. However, they do increase the binary size and can
cause conflicts with libraries already installed on the system, so especially if you are packaging Amber, you may
wish to use the external versions.

In the past, the Amber developers have had trouble with user issues related to broken installations of cer-
tain libraries on certain common OSs. To combat this, the decision was made to prevent Amber from linking
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to certain libraries by default unless specifically told to. As of Amber 20, these libraries are netcdf, netcdf-
fortran, boost, mkl, and arpack. To disable this behavior and use all found libraries, you can use the option
-DTRUST_SYSTEM_LIBS=TRUE.

Sometimes, even more fine-grained control over 3rd party libraries is needed, such as if a specific 3rd party
library is found but fails to link and you want to disable it. For this purpose, three override options are pro-
vided: FORCE_DISABLE_LIBS, FORCE_INTERNAL_LIBS, and FORCE_EXTERNAL_LIBS. These accept
semicolon-separated lists of library names. FORCE_DISABLE_LIBS will force Amber to build without a given
library, and will print an error if that library is required. FORCE_INTERNAL_LIBS will tell Amber to prefer the
internal version of a bundled library. Finally, FORCE_EXTERNAL_LIBS will tell Amber to prefer the version of
a library that is installed on the system.

One last thing: keep in mind that these variables are lists and the entire list is set at once. Suppose you
had previously disabled MKL because of a link error, using -DFORCE_DISABLE_LIBS=mkl. Then, a build
error occurs with mpidpy and you want to disable that too. It’s fine to run CMake again without passing the
FORCE_DISABLE_LIBS option, but when you change it you need to pass the full new value so the mkl entry
isn’t erased. So, the argument to use would be -DFORCE_DISABLE_LIBS=mkl;mpi4py.

2.2.4. Selecting BLAS and MKL

Almost all Amber programs require access to the BLAS (Basic Linear Algebra Subprograms) and LAPACK
(Linear Algebra PACKage) libraries for computing various matrix operations. By default, Amber uses the vener-
able Netlib implementations of these libraries, which are widely compatible, but are not the best optimized. Over
time, several optimized versions of BLAS and LAPACK have been produced, which can offer performance in-
creases of 50%-1000% on large matrix operations. If you are building Amber for a high performance computing
environment, it is highly recommended to make use of an optimized BLAS implementation. Popular options in-
clude OpenBLAS, which is free and supports a wide variety of platforms, and MKL, which is more extensive and
may provide better performance on Intel chips.

Non-MKL BLAS implementations are handled using CMake’s FindBLAS and FindLAPACK modules. These
know about and search for a variety of BLAS and LAPACK implementations, including Netlib, OpenBLAS, and
Macs’ Accelerate framework. To force them to search for these specific versions of BLAS and LAPACK, you can
set the BLA_VENDOR variable to "Generic", "OpenBLAS", or "Apple" respectively. The full list is documented
here. If your BLAS is installed to a nonstandard location, you may need to add it to the CMake search path using
the methods in the previous section.

MKL, however, is a special case. It is a very complicated library that is difficult to link properly on all systems, so
it is not found by default to reduce the chance of errors. To enable it, either pass -DTRUST_SYSTEM_LIBS=TRUE
or -DFORCE_EXTERNAL_LIBS=mkl (see above). Amber will then search for MKL in its default install location,
such as /opt/intel/mkl on Linux. The environment variables MKL_HOME and MKLROOT will also be checked
if they are defined. If MKL is installed to a different location, or if you need to select a specific version, define
the MKL_HOME CMake variable to point to MKL’s install directory. MKL can be used in two modes: threaded
or serial. Threaded mode provides the option for MKL to split calculations across multiple threads internally (ex-
actly how it does this is configured using environment variables). By default Amber will attempt to link MKL
in threaded mode, but if this causes problems (it requires that your compiler have an OpenMP implementation
supported by MKL) then you can use -DMKL_MULTI_THREADED=FALSE to turn this off. Also, if you want
Amber to use the MKL static libraries, you can pass the -DMKL_STATIC=TRUE option. Unfortunately, due to
how CMake find modules work, this option only takes effect the first time CMake is run.

2.2.5. Configuring Python

A substantial amount of Amber programs either are written in or provide interfaces to Python. Unfortunately,
Python installations tend to vary wildly across different systems, and Python programs are very prone to issues
with dependencies on native libraries as well as other Python libraries. So, Amber supports three different Python
configurations for different systems and setups.

1. The first option, and the one that is used by default, is to let Amber control the Python distribution en-
tirely. This is best if your system python environment is broken, unpredictable, or uncontrolled. Amber
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will download a self-contained Continuum Miniconda python interpreter when CMake is run for the first
time and will manage it entirely itself. In Amber 20, Python 3 is used by default, but you can use -
DMINICONDA_USE_PY3=FALSE to download Python 2 instead. Once Amber is installed, you can access
Amber’s miniconda via the amber.python symlink in the install directory. Using miniconda will eliminate
the chance of a conflict between Amber’s binaries and dependencies and your system Python interpreter.
However, there are some downsides: it takes up a fair amount of space, on the order of a gigabyte, and
since it’s a separate interpreter, packages that you have installed to other interpreters won’t be able to easily
interoperate with Amber. Finally, when using miniconda, you can’t move the Amber install folder from
its original location. However, it’s still a reliable option for new users and those with problematic Python
environments.

2. Another popular option for Amber python is to use Anaconda. If you haven’t heard of it, Anaconda is
a scientific python distribution, but it’s also practically a miniature Linux distro, containing a huge array
of binary libraries that are installed along with the Python packages that need them. This can be very
helpful because it already includes a lot of the libraries needed by Amber, such as MKL and openblas.
And unlike using internal Miniconda, using your system Anaconda means Amber can interoperate with
other packages and programs installed to that interpreter. However, Anaconda has its own caveat: since
it includes its own versions of system libraries, the Anaconda interpreter sometimes won’t be able to load
Amber libraries that link to the system versions of those same libraries. Also, there are situations where
Anaconda’s internal libraries can conflict with system libraries and cause programs to fail to build or run.
Phew, have I confused you yet? Yeah, shared library dependencies are the pits. To use Anaconda as a python
interpreter only, all that is needed is to disable Miniconda (-DDOWNLOAD_MINICONDA=FALSE) and
activate your conda env before you build Amber. Just make sure to keep the conda env active whenever
you use Amber, and everything should work fine. To also link libraries from Anaconda by default, use -
DUSE_CONDA_LIBS=TRUE (this must be passed the first time you run CMake). The build system will
search for the conda executable in your PATH, find your Anaconda installation, and add it to the front of the
library search path.

3. Your final option is to just use your existing system Python interpreter. Set DOWNLOAD_MINICONDA to
FALSE, and let CMake find your Python interpreter on the PATH. By default it will prefer the latest versioned
python available, so python3.6 would be found before python2.7. To select a different interpreter, set the
PYTHON_EXECUTABLE variable to point to it. Amber requires certain Python packages be installed:
currently numpy, scipy, matplotlib, cython, setuptools, and tkinter. You can install these through your distro’s
package manager or through pip. If you don’t have root access, the pip install --user command is your friend
since it will install to your home directory instead of the system dirs. Compared to the legacy build system,
Amber’s CMake build system now has much-improved support for working with your system Python, and
it should work fine on most system. However, there can still be issues, so we recommend switching to
Anaconda or Miniconda if the system installation is not working for you.

2.2.6. Configuring Amber Settings

There are a few other commonly used Amber build options that it’s worth being aware of. Ever had an Amber
tool that you didn’t care about fail to build, and you just wish you could make it disappear? Well now you can,
with DISABLE_TOOLS! Just pass it a semicolon-separated list of tools (folder names under AmberTools/src/ or
src/) to this option, and it will prevent them from building. A note will be added at the bottom of the build report
saying which tools you’ve disabled. It also tracks dependencies between tools, so disabling something that other
things depend on will properly disable the dependers instead of causing build errors.

Another useful option is the STATIC flag. This will cause all Amber executables and libraries to be linked
statically. This means that they don’t depend on any other libraries from Amber and can be moved anywhere or
to any other machine (as long as the same system libraries are present). It also may provide a performance boost
to some programs by removing the overhead of resolving symbols in shared libraries, though this has not been
measured.

Finally, Amber has two different ways of running tests, controlled by the INSTALL_TESTS option. With
INSTALL_TESTS enabled, all Amber and AmberTools tests are installed to the install prefix, and can be run with
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the standard commands using the Makefile there. This makes the installation totally independent of the source dir,
which is convenient for packaging or distributing Amber. However, there are some downsides: the tests are quite
large, taking up a gigabyte or more of space. Copying them from the source folder will eat up even more of your
disk and make the install process take quite a bit longer. If you’re planning on keeping the source directory around
then it might make more sense to leave INSTALL_TESTS disabled. In this configuration, the tests will not be
installed and you must run them out of the source directory after sourcing amber.sh.

Several other common tasks are covered with more in-depth guides:

¢ Cross-compiling Amber

* Creating packages (includes Linux deb/rpm packages, OS X DMG packages, and Windows installers)

2.2.7. Debugging the Build

Last but not least, there are several options that are very useful when things go haywire in the build.

You’ll notice pretty quickly when building that CMake chooses to omit the full compiler command in favor of
a pretty-looking filename and progress percentage only. This is nice most of the time, but can be a problem if a
compile command is failing and you aren’t sure why. Luckily, CMake has a handy option for these situations:
CMAKE_VERBOSE_MAKEFILE. Setting it to TRUE will cause it to print out the full compiler command for
each file. As a shortcut, if you are using Makefiles, then you can run make VERBOSE=1 to trigger the same
behavior without rerunning CMake.

But what if you’re sure that Amber is being compiled correctly, but it’s having trouble linking to an external
library? This is where -DPRINT_PACKAGING_REPORT=TRUE can help. This will cause Amber to print a
detailed list of all the libraries that it is linking to on your system and where they are located. It’s mainly meant
to help analyze dependencies for packaging, but it’s also convenient as a general purpose debugging tool in case
Amber is linking to something it shouldn’t be.

2.3. Python in Amber

The Python programming language is the language of several key components of Amber. In addition to stan-
dalone programs like MMPBSA.py, MCPB.py, and ParmEd, a growing number of components also expose a
substantial fraction of Amber functionality through Python APIs, like pysander, ParmEd, and pytraj.

If you point cmake to a python interpreter (by setting -DPYTHON_EXECUTABLE=/path/to/python), that will
be used if has the necessary components installed. Otherwise, you will be notified and asked if you want to install
Miniconda. If so, cmake will download and install this version, which can either be miniconda2 or miniconda3.
Making use of this download facility is recommended for most users; if you choose to use some other python
installation, you should know what you are doing, and how to install the needed components, which include numpy,
scipy, cython, ipython, notebook, matplotlib. Users can access this Python via SAMBERHOME/bin/amber.python.

By default, AmberTools attempts to install Python packages to $AMBERHOME/1ib/pythonX.Y, where X.Y is the
version of Python that was found (or assigned) by cmake. The amber.sh resource script then adds this path to your
PYTHONPATH environment variable to ensure that the Python runtime can find these packages.

Users are encouraged to use Python versions 2.7 and 3.4 (or greater) since those versions have been verified
to work with all Python components of Amber (assuming other prerequisites, like numpy and/or scipy are met).
Different components of AmberTools support different versions of Python. Some codes (like pytraj, ParmEd and
pdbd4amber) work unchanged in both Python 2.7 and Python 3.x, while others need to be converted using 2t03
upon installation. If users plan to combine AmberTools (such as pysander, ParmEd) with third party packages then
they they need to be careful. For example, circa 2017 Phenix and PyRosetta did not support Python 3.x, so users
would need to use Python 2.7.

2.4. Applying Updates

For most users, simply running cmake and responding ‘yes’ to the update request will automatically download
and apply all patches. This section describes the main updating script responsible for managing updates. We
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2.4. Applying Updates

suggest that you at least skim the first section on the basic usage—particularly the note about the --version flag
for if/when you ask for help on the mailing list.

2.4.1. Basic Usage

Updates to AmberTools and Amber are downloaded, applied, and managed automatically using the Python
script update_amber. This script works on every version of Python from Python 2.4 through the latest Python 3
release. To use this command manually, you must refer to the “source” directory, i.e. the folder headed by
“amber20_src” where you downloaded the codes. Here, we are going to assume that you have set your
AMBERSOURCE environment variable to this directory, say by typing the command:

export AMBERSOURCE=/path/to/amber20_src

Please substitute /path/to amber20_src with the appropriate path for your machine: this will be the folder where
you un-tarred the distribution. Now there are three basic update-related commands:

* $AMBERSOURCE/update_amber —-check-updates : This option will query the Amber website for any
updates that have been posted that have not been applied to your installation. If you think you have found a
bug, this is helpful to try first before emailing with problems since your bug may have already been fixed.

* $SAMBERSOURCE/update_amber —-version : This option will return which patches have been applied to
the current tree so far. When emailing the Amber list with problems, it is important to have the output of this
command, since that lets us know exactly which updates have been applied.

* SAMBERSOURCE/update_amber --update : This option will go to the Amber website, download all updates
that have not been applied to your installation, and apply them to the source code. Note that you will
have to recompile any affected code for the changes to take effect! Todo this, go to your
build directory and re-rerun the cmake command you used in Step 3 of Section 2.1.

2.4.2. Advanced options

update_amber has additional functionality as well that allows more intimate control over the patching process.
For a full list of options, use the ——full-help command-line option. These are considered advanced options.

* $AMBERSOURCE/update_amber —-download-patches : Only download patches, do not apply them
* $AMBERSOURCE/update_amber —-apply-patch=<PATCH>: This will apply a third-party patch

* $AMBERSOURCE/update_amber —-reverse-patch=<PATCH> : Reverses a third-party patch file that was
applied via the —-apply-patch option (see above).

* $AMBERSOURCE/update_amber --show-applied-patches: Shows details about each patch that has been
applied (including third-party patches)

* SAMBERSOURCE/update_amber —-show-unapplied-patches : Shows details about each patch that has
been downloaded but not yet applied.

* SAMBERSOURCE/update_amber --remove-unapplied : Deletes all patches that have been downloaded but
not applied. This will force update_amber to download a fresh copy of that patch.

* $AMBERSOURCE/update_amber —-update-to AmberTools/#,Amber/# : This command will apply all
patches necessary to bring AmberTools up to a specific version and Amber up to a specific version. Note,
no updates will ever be reversed using this command. You may specify only an AmberTools version or an
Amber version (or both, comma-delimited). No patches are applied to an omitted branch.

* SAMBERSOURCE/update_amber —-revert-to AmberTools/#,Amber/# : This command does the same
as ——update-to described above, except it will only reverse patches, never apply them.
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update_amber will also provide varying amounts of information about each patch based on the verbosity setting.
The verbose level can be set with the —-verbose flag and can be any integer between 0 and 4, inclusive. The
default verbosity level changes based on how many updates must be described. If only a small number of updates
need be described, all details are printed out. The more updates that must be described, the less information is
printed. If you manually set a value on the command-line, it will override the default. These values are described
below (each level prints all information from the levels before plus additional information):

¢ 0: Print out only the name of the update file (no other information)

 1: Also prints out the name of the program(s) that are affected

e 2: Also prints out the description of the update written by the author of that update.

* 3: Also prints the name of the person that authored the patch and the date it was created.

* 4: Also prints out the name of every file that is modified by the patch.

2.4.3. Internet Connection Settings

If update_amber ever needs to connect to the internet, it will check to see if http://ambermd.org can be contacted
within 10 seconds. If not, it will report an error and quit. If your connection speed is particularly slow, you can
lengthen this timeout via the —-t imeout command-line flag (where the time is given in seconds).

Proxies By default, update_amber will attempt to contact the internet through the same mechanism as
programs like wget and curl. For users that connect to the internet through a proxy server, you can either set the
http_proxy environment variable yourself (in which case you can ignore the rest of the advice about proxies
here), or you can configure update_amber to connect to the internet through a proxy. To set up update_amber to
connect to the internet through a proxy, use the following command:

$AMBERSOURCE/update_amber ——-proxy=<PROXY_ ADDRESS>

You can often find your proxy address from your IT department or the preferences in your favorite (configured)
web browser that you use to surf the web. If your proxy is authenticated, you will also need to set up a user:

$AMBERSOURCE/update_amber --proxy-user=<USERNAME>

If you have set up a user name to connect to your proxy, then you will be asked for your proxy password the first
time update_amber attempts to utilize an online resource. (For security, your password is never stored, and will
need to be retyped every time update_amber runs).

You can clear all proxy information using the --delete-proxy command-line flag—this is really only necessary
if you no longer need to connect through any proxy, since each time you configure a particular proxy user or server
it overwrites whatever was set before.

Mirrors If you would like to download Amber patches from another website or even a folder on a local filesystem,
you can use the ——amber-updates and ——ambertools-updates command-line flags to specify a particular web
address (must start with http://) or a local folder (use an absolute path). You can use the —-reset-remotes
command-line flag to erase these settings and return to the default Amber locations on http://ambermd.org.

If you set up online mirrors and never plan on connecting directly to http://ambermd.org, you can change
the web address that update_amber attempts to connect to when it verifies an internet connection using the
-—internet-check command-line option.
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2.5. Installation using the old (legacy) build system

The transition of our build system to cmake (described above) offers many advantages. This system has been
tested on many variants of Linux and MacOSX, but we recognize that there may well be a period of adjustment,
since the setup of compilers and installed libraries can vary a lot from machine to machine. This section gives an
overview of how to install and test your distribution using the older (aka “legacy”) build system. You may find it
useful if cmake doesn’t work for you. Once you have downloaded the distribution files, do the following:

1. First, extract the files in some location (we use /home/myname as an example here):

cd /home/myname
tar xvfj AmberTools20.tar.bz2 # (Note: extracts in an
# “amber20_src” directory)
tar xvfj Amber20.tar.bz2 # (only if you have licensed Amber 20!)

2. Next, set your AMBERHOME environment variable:

export AMBERHOME=/home/myname/amber20_src # (for bash, zsh, ksh, etc.)
setenv AMBERHOME /home/myname/amber20_src # (for csh, tcsh)

Be sure to change the “/home/myname” above to whatever directory is appropriate for your machine, and
be sure that you have write permissions in the directory tree you choose. (In general, you should not install
application software, e.g., Amber, as root.)

3. Next, you may need to install some compilers and other libraries. Details depend on what OS you have, and
what is already installed. Package managers can greatly simplify this task. See http://ambermd.org/amber_install. html
for more information, and for requirements for other variants of Linux, and for Macintosh OSX.

4. Now, in the AMBERHOME directory, run the configure script:

cd $AMBERHOME
./configure --help

will show you the options. Choose the compiler and flags you want; for most systems, the following should
work:

./configure gnu

This step will also check to see if there are any updates and bug fixes that have not been applied to your
installation, and will apply them (unless you ask it not to). If the configure step finds missing libraries, go
back to Step 3. This step will also ask if you want to install a compatible Python executable for the Python
programs in Amber (including MMPBSA.py, MCPB.py, ParmEd, pysander, pytraj, pdb4amber, and the rest
of amberlite). Since Amber now requires Python 2.7 or later, along with numpy, scipy, and matplotlib to
enable all of its functionality, configure now provides an option to download a compatible Python from
Continuum IO (via miniconda) and install it in the Amber directory for use with Amber programs. See
Section 2.3 for more details. If your default Python has the required prerequisites installed, configure will
simply select that Python for use with Amber.

Do not choose any parallel options at this step! You will need to install the serial version first; options for
parallel builds are described below at Step 8.

5. The configure step will create two resource files in the AMBERHOME directory: amber.sh and amber.csh.
These sourceable scripts will set up your shell environment correctly for Amber:

source /home/myname/amber20_src/amber.sh # for bash, zsh, ksh, etc.
source /home/myname/amber20_src/amber.csh # for csh, tcsh

Of course, /home/myname/amber18 should be adjusted for your AMBERHOME. Adding these commands
to your login resource file (e.g., ~/.bashrc, ~/.cshrc, ~/.zshrc, etc.) will set up your environment every time
you start a new shell. Note, this step is absolutely necessary to run any of the Python modules included with
Amber.
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6. Then,

10.

make install

will compile the codes. If this step fails, read the error messages carefully to try to identify the problem.

. This can be followed by

make test

which will run tests and will report successes or failures. See the discussion above about how to interpret
test results.

. If you are new to Amber, you should look at the tutorials and this manual and become familiar with how

things work. If and when you wish to compile parallel (MPI) versions of Amber, do this:

cd $AMBERHOME

./configure -mpi <....other options....> <compiler-choice>

make install

# Note the value below may depend on your MPI implementation
export DO_PARALLEL="mpirun -np 2"

make test

# Note, some tests, like the replica exchange tests, require more
# than 2 threads, so we suggest that you test with either 4 or 8
# threads as well

export DO_PARALLEL="mpirun -np 8"

make test

This assumes that you have installed MPI and that mpicc and mpif90 are in your PATH. Some MPI
installations are tuned to particular hardware (such as InfiniBand), and you should use those versions if you
have such hardware. Most people can use standard versions of either mpich or openmpi. To install one of
these, use one of the simple scripts that we have prepared:

cd $AMBERHOME/AmberTools/src
./configure_mpich <compiler-choice> OR
./configure_openmpi <compiler-choice>

Follow the instructions of these scripts, then return to the beginning of step 7.
See Section 20.6.5 for information about installing the GPU-accelerated versions of pmemd.

See Section 6.6.4 for information about installing the GPU-accelerated version of pbsa.

2.6. Contacting the developers
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Please send suggestions and questions to amber@ambermd.org. You need to be subscribed to post there; to
subscribe, go to http.://lists.ambermd.org/mailman/listinfo/amber. You can unsubscribe from this mailing list on
the same site.
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3. Molecular mechanics force fields

Amber is designed to work with several simple types of force fields, although it is most commonly used with
parametrizations developed by Peter Kollman and his co-workers and “descendents”. The traditional parametriza-
tion uses fixed partial charges, centered on atoms. Less commonly used modifications add polarizable dipoles to
atoms, so that the charge description depends upon the environment; such potentials are called “polarizable” or
“non-additive”. An alternative is to use force fields originally developed for the CHARMM or Tinker (AMOEBA)
codes; these require a different setup procedure, which is described in Sections 14.2.2.8 (for CHARMM) and
Chapter 30 (for AMOEBA). Chapter 14 provides a basic introduction to force fields, along with details of how the
parameters are encoded in Amber files.

In previous versions of AmberTools, we including “combined” leaprc files (such as leaprc.ff14SB) that loaded,
protein, nucleic acid and water models that worked well together. This was convenient for most users, but tended
to obfuscate the important issue of deciding which force fields to use. Since various choices make good sense,
we have implemented a new scheme for users to specify the force fields they wish to use. Depending on what
components are in your system, you may need to specify:

/ * a protein force field (recommended choice is ff14SB) \
¢ a DNA force field (recommended choice is OL15)

¢ an RNA force field (recommended choice is OL3)
* a carbohydrate force field (recommended choice is GLYCAM_06j)
* alipid force field (recommended choice is lipid17)

¢ a water model with associated atomic ions (more variable, but the most common choice is still zip3p); other
popular choices are spc/e, tip4pew, and OPC. Not needed if you are using an implicit solvent model.

* a general force field, for organic molecules like ligands (recommended choice is gaff2)

& * other components (such as modified amino acids or nucleotides, other ions), as needed /

Notes:

1. You have to be careful if you try to adopt a “mix and match” strategy for different components. The recom-
mended choices are designed to work well together, and have been fairly extensively tested. Use of other
combinations requires a deeper knowledge of the nature and origin of force fields; see below and consult the
original papers for more information. If you wish to combine proteins with nucleic acids, only the recom-
mended combination above (or one where leaprc. DNA.OLI5 is replaced with leaprc. DNA.bscl) is allowed.

2. In general, your input file to LEaP will begin with several commands to source the relevant leaprc files. For
example the following preamble would allow you to include proteins, DNA, lipids, general components,
water, and atomic ions like Na+ or Cl-, using the current recommended force fields:

source leaprc.protein.ff14SB
source leaprc.DNA.OL15
source leaprc.lipidl?

source leaprc.water.tip3p
source leaprc.gaff2
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Note that explicit solvent simulations now require you to load a leaprc.water.xxxx file; this is a change
from AmberTools15 and earlier versions, where the TIP3P water model was loaded by default. The change
reflects the growing awareness[ 18] within the modeling community that TIP3P should no longer be assumed
as appropriate for every type of biomolecular simulation, and that the use of more modern water models
instead can offer clear accuracy improvements in a rapidly increasing number of situations, see below.

3. There are some leaprec files for older force fields in the SAMBERHOME/dat/leap/cmd/oldff directory. We no
longer recommend these combinations, but we recognize that there may be reasons to use them, especially
for comparisons to older simulations. See Section 3.12 for more information.

4. In particular, the leaprc.ff14SB file, in the oldff/ directory, is identical to the file of the same name in Amber-
Tools15. In spite of its name, it is a “combined” file, with protein, DNA, RNA and water elements. This file
might be of particular interest if you want to make sure that systems created the “new” way (with the leaprc
files outlined above) are consistent with those using the older, “combined” method.

3.1. Proteins

In addition to the recommended file, leaprc.protein.ff14SB, there are a variety of alternatives for proteins; these
are described in the following sections.

3.1.1. The SB family of protein forcefields (ff19SB, ff14SB, and ff99SB)

leaprc.protein.f£f19SB
leaprc.protein.ff14SB

leaprc.protein.ff14SBonly This is the same as leaprc.protein.ff14SB, but will additionally load:
frcmod. ££99SB14 ££99SB backbone parameters with £f14SB atom types

ff19SB

JFI9SB [19] is the latest model of the SB protein forcefields, developed in the Simmerling Lab at Stony Brook
University. The new ff19SB forcefield has shown to improve amino acid-dependent properties such as helical
propensities and reproduces the differences in amino-acid-specific PDB Ramachandran map. Users are encouraged
to read the ff19SB article [19] to learn more about the motivation behind ff19SB, as well as details of the fitting and
testing protocols and improved performance relative to ff14SB. Our older SB protein forcefield models utilized
uncoupled phi/psi dihedral parameters for the protein backbone, and every amino acid except for glycine used
the backbone dihedral parameters fit using alanine. In ff19SB, we improved the backbone dihedrals parameters
for every standard amino acids. We fit coupled ¢/{ parameters using 2D ¢/{) conformational scans for multiple
amino acids, using 2D QM energy surfaces in solution as reference data. These new dihedral parameters include
amino-acid specific CMAPs that are based on residue name. We also zeroed the amplitudes of the old backbone
phi/psi dihedral parameters (in atom name, C-N-CA-C, N-CA-C-N, C-N-CA-CB, CB-CA-C-N, HA-CA-C-0O)
from ff14SB that are based on the atom types. It is important that ff19SB be combined only with a parameter set
that has no cosine terms for these dihedrals.

Our results [19]showed that ff19SB pairs best with the more accurate water model OPC [20] , and that the older
TIP3P model has serious limitations when used with the QM-based ff19SB. As a result, we strongly recommend
using ff19SB with OPC, and we recommend against use with TIP3P.

In order to separate the new ff19SB parameters from the original ff14SB parameters, a new atom type XC was
created for C-alpha for all non-terminal residues. All the bonds, angles, non-bonded parameters (except S, see
below), and dihedral parameters not involving C-alpha were retained from ff14SB. The old backbone dihedral
parameters for C-alpha were modified to use atom type XC for C-alpha (instead of the old CX), and the amplitudes
were set to zero since it will use CMAP instead.

How to use ff19SB:
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To use ff19SB users can execute the following command in tleap:
source leaprc.protein.ff19SB
This will load the following files:

1. parml19.dat is similar to parm10.dat. It has the new atom type XC parameters, which are identical to CX
parameters, except for the dihedral H1-CX-C-O parameters.

2. fremod.ff19SB contains the parameters from fremod.ff14SB, where the CX atom type was replaced with
the XC atom types. The dihedral H1-CX-C-O was copied over from parm10.dat. CX is also replaced
with XC for this dihedral. The magnitude of the backbone dihedrals with XC is zeroed. This is done
since the residue-based CMAP is used instead to calculate the backbone dihedral energies. The Lennard-
Jones parameters for S, SH were both obtained from atom type “s” (sulfur with one connected atom) from
gaff2.dat, while Lennard-Jones parameters for HS were obtained from atom type “hs” (hydrogen-bonded to
sulphur) in gaff2.dat. The CMAP parameters were updated for all non-terminal versions of the 20 standard
amino acids, as well as alternate protonation states for these residues.

3. amino19.lib All parameters from aminol2.lib were copied over. Then, CX (alpha carbon atom type in
ff14SB) was replaced with XC for the entire file. None of the amino acids here should use atom type CX for
the alpha carbon.

4. aminont12.lib and aminoct12.lib is the same file as used for ff14SB, and is not changed in ff19SB. ff19SB
CMAP parameters are not applied to terminal amino acids since they do not have both phi and psi. Instead,
ff14SB is applied using parameters contained in aminont12.lib for N-terminal amino acids and aminoct12.1ib
for the C-terminal amino acids.

Instructions for implementing ff19SB for a new amino acid (residue)

The situation often arises when a user may want to modify parameters for a standard amino acid or may want
to create a new parameters set for a modified amino acid. If the user wants to implement ff19SB on their new
amino acid, they should be cautious about the C-alpha atom type. In ff14SB, CX is used for the C-alpha atom
type, and hence all the ff14SB backbone parameters specify the CX atom type. In ff19SB, CX is replaced by
XC, and hence all the ff19SB backbone parameters specify the XC atom type. Additionally, the ff19SB backbone
dihedral parameters are zeroed, since CMAPS are used to define the energy of phi and psi. Importantly, if the
CX atom type is used, then ff14SB backbone dihedral parameters will be applied to all residues that use the CX
atom type, and if the XC atom type is used, then all backbone dihedral parameters will be zeroed. Care must be
taken not to mix these two protocols. When implementing ff19SB for a new amino acid, the user has the option to
build their topology file via tleap using pure ff19SB including a generic CMAP for the new residue, or a mixture
of ff14SB/ff19SB using ff19SB for everything except the new residue. Therefore we urge the user to follow the
procedure described in one of the scenarios below.

Scenario 1: In order to apply ff14SB parameters to a non-standard amino acid or a specific standard amino acid
and apply ff19SB to every other amino acid in the protein, please follow these steps:

source leaprc.protein.ff19SB
loadoff user-defined-file.lib
loadamberparams user—-defined-file.frcmod

The user-defined library and frcmod files for the new residue must use the CX atom type for C-alpha. Since the
ff19SB CMAP is applied based on residue name, it is important that new residue using CX for C-alpha does not
match the existing residue names for the standard amino acids, or else the CMAP will be applied in addition to the
ff14SB backbone parameters, giving incorrect results.

Scenario 2: In order to apply ff19SB parameters to a non-standard amino acid or a specific standard amino acid
and also apply ff19SB to every other amino acid in the protein, please follow these steps:
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source leaprc.protein.ff19SB

loadoff user-defined-file.lib
loadamberparams user—defined-file.frcmod
loadamberparams frcmod.f£f19SB_XXX

The user-defined library file and fremod files for the new residue must use the XC atom type for C-alpha. Ensure
the amplitudes of the phi/psi dihedrals are zeroed since you will be applying a CMAP for phi/psi. To apply a
CMAP for the phi/psi dihedral of the modified amino acid, the user must modify the provided file
fremod.ff19SB_XXX by replacing XXX in the CMAP_TITLE and CMAP_RESLIST shown below, with the new
residue name matching that defined in the user-defined library file. frcmod.ff19SB_XXX can be found in
$AMBERHOME/dat/leap/parm/ directory.

$FLAG CMAP_TITLE
XXX CMAP

%$FLAG CMAP_RESLIST 1
XXX

fremod.ff19SB_XXX will apply the LEU CMAP backbone parameters which we recommend as a generic model
for modified amino acids. Next, the user can load the new frcmod.ff19SB_XXX.

ff14SB

Jf14SB [21] was a continuing evolution of the earlier ff99SB force field.[22] Several groups had noticed that the
older ff94 and ff99 parameter sets did not provide a good energy balance between helical and extended regions of
peptide and protein backbones. Another problem is that many of the ff94 variants had incorrect treatment of glycine
backbone parameters. ff99SB improved this behavior, presenting a careful reparametrization of the backbone
torsion terms in ff99 and achieves much better balance of four basic secondary structure elements (PP II, 8, o,
and og). Briefly, dihedral term parameters were obtained through fitting the energies of multiple conformations
of glycine and alanine tetrapeptides to high-level ab initio QM calculations. We have shown that this force field
provides much improved proportions of helical versus extended structures. In addition, it corrected the glycine
sampling and should also perform well for B-turn structures, two things which were especially problematic with
most previous Amber force field variants. The changes mainly involve torsional parameters for the backbone and
side chains. For backbones, experimental scalar coupling data for small solvated peptides became available [23]
against which ff99SB was compared.[24] As ff99SB backbone dihedrals were fit based on gas-phase quantum data,
we felt that slight empirical adjustments were worth pursuing. This was done to improve agreement with scalar
coupling data, and we observed that this also improved stabilities of helical peptides.

ff14SBonlysc

[f14SBonlysc, where sc stands for side chains, includes ff99SB backbone parameters with updated side chain
parameters that were derived from ab initio quantum mechanics calculations (as were the ff99SB backbone cor-
rections). This model is slightly different from ff/4SB, which includes the ffi4SBonlysc parameters as well as a
small empirical correction to backbone parameters that was designed to improve agreement between NMR data
and simulations in TIP3P water for short peptides. We are currently exploring whether this empirical correction
also improves simulations in other water models, such as the GBneck2 (igb=8) model. [25] Currently, it appears
that igh=8 may work best with the fully quantum mechanics-based dihedral parameters included in ff14SBonlysc.
Simulations performed in explicit water most likely benefit from the empirical corrections included in ffI4SB or
Jf19SB..

3.1.2. The ff15ipq protein force field

leaprc.protein.f££f15ipg This will load the files listed below
parml5ipg 10.3.dat force field parameters
aminol5ipqg 10.0.1lib topologies and charges for amino acids
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aminontl5_ipql0.0.1lib same, for N-terminal amino acids
aminoctl5ipg 10.0.1lib same, for C-terminal amino acids

[f15ipq [26] continues the development begun with the ff14ipqg force field [27, 28], but offers new, we hope
better, parameter choices, data fitting, and validation. The physical assumptions behind the model are the same,
but problems with ffI4ipg, most generally the "stickiness" of polar groups in simulations, led to sweeping pa-
rameter changes. The pair-specific Lennard-Jones terms in ff/4ipq were the problem, introducing an imbalance
of protein:water and protein:protein interactions. They have been replaced by modified polar hydrogen radii and
a consistent Lorentz-Berthlot combining rule as found in other Amber force fields. As a consequence, the entire
charge set has changed, albeit slightly, and the the torsion parameters have been expanded and rederived. To further
improve the internal potential energy surface, refitted angle parameters are included for the protein backbone. The
new version comprises nearly 1,200 unique parameters, and ff14ipq is archived (use o1dff/leaprc.ffl4ipq) for
backwards compatibility and comparisons.

The extended IPolQ charge derivation anticipates a workflow in which the final model must have charges roughly
consistent with the polarization molecules experience in water, but also new torsion parameters which are often
derived with quantum calculations of the system in vacuum. In the extended methodology, two sets of charges
are fitted: one for the systems in vacuum, the other for systems in the condensed phase. The original IPolQ
method [27] derives the appropriate condensed phase charges by fitting to the average electrostatic potential of
polarized and unpolarized molecules, a process that harkens to linear response theory and implicitly accounts for
the energetic cost of polarizing the system away from is gas phase equilibrium. The extended scheme draws on
the vacuum phase electrostatic data a second time to make an alternative set of charges appropriate to describe the
vacuum potential energy surface—the IPolQ charges themselves are, in fact, re-expressed as a perturbation of this
gas phase charge set. Both sets of charges are derived in the same linear least squares fitting problem, with restraint
equations weakly coupling the corresponding charges together. This creates charge sets for each phase related by
a minimal perturbation, which can be assumed to be the effective, average polarization of the molecules when
they enter solution. The charge set appropriate to the vacuum phase is then used when fitting torsion potentials
to vacuum phase quantum mechanical energies, and the torsion potentials are transferred directly for use with the
condensed-phase charge set in actual simulations, following the earlier assumption that the effective polarization
of the molecules, and thereby any energetic consequences of entering the condensed phase, are captured in the
charge perturbation.

All parameter optimization in ff15ipq, like its predecessor ffI4ipq, is iterative: a generational learning scheme
whereby the results of previous simulations and force field manipulations are submitted to quantum single point
energy calculations and then added to the training data. As with ffl4ipq, charges and gas-phase conformational
energies are all taken at the MP2/cc-pVTZ level; ff15ipq takes the ff14ipq conformational energies as its starting
point and expands the space nearly four-fold. We find that this crude form of machine learning is a good substitute
for human intervention. As with ffl4ipq, the iterative process led to an evolution in simulation performance over
a variety of systems. We utilized these benchmarks to determine when the parameter set was ready for general
release.

The new ff15ipq model [26] was derived with the SPC/E-b water model of Takemura and Kitao [29]. Returning
to three-point water models improves performance of most Amber protein simulations on GPUs by about 30% due
to the reduction in the overall number of particles; a smaller improvement can be seen on CPUs. While SPC/E-b
is the recommended water model, the solvent reaction field potential observed in our IPolQ studies is consistent
across three- and even some four-point waters: combinations of ffI5ipg with TIP3P, the original SPC/E, and other
water models are reasonable to try. One issue that may arise in some circumstances is the compatibility of the water
model with ion parameters: we have set ff15ipq to reference ion parameters appropriate for the nearest water model
available, SPC/E. However, for highly charged or dense ionic solutions this combination may be sub-optimal. With
respect to compatibility with other macromolecular force fields such as sugars, lipids, or nucleic acids, we note
that while the charge set is novel, the MP2/cc-pVTZ solution-phase [PolQ charges [27] are in fact quite similar to
the Cornell charges derived at the HF/6-31G* level [30]. This result may support the long lifespan of that charge
set, and makes it likely that ff15ipg will be compatible with other force fields designed at the common HF/6-31G*
level.

[ff15ipq has been validated on a larger number of test systems than its predecessor, and for much longer timescales.
Multiple alpha-helical and beta-sheet peptides have been tested at a variety of temperatures, and numerous small
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proteins (the largest including lysozyme and the p5S3/MDM2 complex) have been simulated for timescales ranging
from 4 to 10 microseconds, displaying excellent stability and also instability in cases where loops of the proteins
or isolated peptides are known to be disordered. Various teething problems in the ff14ipq force field were solved
by improvements to the data set or the fitting protocol itself, so we are increasingly confident that ff15ipqg and
future products of the IPolQ workflow will be reliable straight out of the automated parameter development phase.
The entire data set and mdgx input file for deriving the torsion and angle parameters of ff15ipq will be released as
supporting information in the upcoming publication on the force field. In the future we hope to build on the lineage
of ff-ipq protein models to include other important areas of biological chemistry.

3.1.3. The fb15 (“force balance”) protein force field

leaprc.protein. fbl5 This will load the files listed below
frcmod. £b15 force field parameters

frcmod. tip3pfb parameters for the force balance 3-point model
all_aminofbl5.1lib topologies and charges for amino acids

all aminontfbl5.lib same, for N-terminal amino acids
all_aminoctfbl5.1lib same, for C-terminal amino acids

The files can be used for protein-water simulations using the “force-balance” approach described in Ref. [31, 32].
There is also a 4-point water model available, as described in section 3.5. For alkali and halide ions, the Joung-
Cheatham parameters for TIP3P (or TIPAPEW) are recommended; see Section 3.6.

3.1.4. The Duan et al. (2003) force field

leaprc.protein.£f£f03.rl loads the following files:

frcmod. ££03 For proteins: changes to parm99.dat, primarily in the
phi and psi torsions.

all_amino03.in Charges and atom types for proteins

all_aminont03.in For N-terminal amino acids

all _aminoct03.in For C-terminal amino acids

The ff03 force field [33, 34] is a modified version of ff99 (described below). The main changes are that charges
are now derived from quantum calculations that use a continuum dielectric to mimic solvent polarization, and that
the ¢ and y backbone torsions for proteins are modified, with the effect of decreasing the preference for helical
configurations. The changes are just for proteins; nucleic acid parameters are the same as in ff99.

The original model used the old (ff94) charge scheme for N- and C-terminal amino acids. This was what was
distributed with Amber 9, and can still be activated by using oldff/leaprc.ff03. More recently, new libraries for the
terminal amino acids have been constructed, using the same charge scheme as for the rest of the force field. This
newer version (which is recommended for all new simulations) is accessed by using leaprc.protein.ffO3.r1.

3.1.5. The Yang et al. (2003) united-atom force field

frcmod. ££03ua For proteins: changes to parm99.dat, primarily in the
introduction of new united-atom carbon types and new

side chain torsions.

uni_amino03.in Amino acid input for building database
uni_aminont03.in NH3+ amino acid input for building database.
uni_aminoct03.in COO- amino acid input for building database.

The ff03ua force field [35] is the united-atom counterpart of ff03. This force field uses the same charging scheme
as ff03. In this force field, the aliphatic hydrogen atoms on all amino acid side-chains are united to their corre-
sponding carbon atoms. The aliphatic hydrogen atoms on all alpha carbon atoms are still represented explicitly to
minimize the impact of the united-atom approximation on protein backbone conformations. In addition, aromatic
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hydrogens are also explicitly represented. Van der Waals parameters of the united carbon atoms are refitted based
on solvation free energy calculations. Due to the use of an all-atom protein backbone, the ¢ and y backbone
torsions from ff03 are left unchanged. The sidechain torsions involving united carbon atoms are all refitted. In this
parameter set, nucleic acid parameters are still in all atom and kept the same as in ff99.

3.1.6. Options for intrinsically disordered proteins.

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are proteins or parts (regions)
of protein that lack stable secondary and tertiary structures under specific physiological conditions[36]. Compared
to globular proteins in their native states, atomistic modeling of IDPs and IDRs is inherently more demanding:
these structures are represented by multiple inter-converting conformations, often within kg7 of each other. Thus,
while a simulation that focuses on the unique native state of a globular protein may be robust to errors in the force-
field that over-stabilize the native state, the same errors of just 1 or 2kp7T may lead to a completely wrong relative
abundance of conformations representing the IDP. Long time-scale simulations have demonstrated[37] that several
popular water models, in combination with any of several widely accepted force-fields, lead to overly compact
IDP conformations. Efforts to improve force fields and water models for IDPs are on-going[37—41]; recently, OPC
water model in combination with the ff99SB was found to improve, significantly, accuracy of atomistic simulations
of IDPs[42].

3.2. Nucleic acids

As with proteins, many features of the current force fields, including partial atomic charges, Lennard-Jones
parameters, and most bond and angle terms, date back to force fields developed in the 1990’s, and overviews of
this work are available.[43, 44] The next breakthroughs in the Amber nucleic acid force field development came
from observations from relatively longer simulations on the 50-100 ns time scale in the early 2000’s.[45, 46] These
simulations found systematic over-population of y = trans backbone geometries in nucleic acids. High level QM
calculations were performed on models of sugars and phosphates, specifically a sugar-phosphate model[47] and
a sugar-phosphate-sugar model,[48] which ultimately led to the ff99-bscO parameterization.[47] For simulation
of canonical DNA and RNA structures, the ff99-bscO parameterization has proven rather successful. For non-
canonical structures, particularly those with loops or bulges, or ¥ flips, some anomalies have been noted.

3.2.1. RNA
] Desired Behavior Source these files | Notes \
RNA
f990L3 leaprc.RNA.OL3 parmbsc0 o/y [47] + YOL3 [49] to ff99
[990L3 + backbone phosphate leaprc.RNA.LJbb [990L3 + backbone phosphate modifications[50]
ff99y + bsc0 leaprc. RNA.YIL parmbscO o/y [47]+ Yildirim [51]y mods to ff99.
ff99bscO oldff/leaprc.ff99bscO Contains parmbsc0 o/y mods[47] to ff99.
“Rochester” torsions leaprc.RNA.ROC [52]
“DE Shaw” modifications leaprc.RNA.Shaw [53]
Modified nucleotides leaprc.modrna08 parameters for modified nucleosides [54]

Table 3.1.: How to specify RNA force fields in LEaP; recommended variants are in italics.

With RNA, incorrect loop geometries, backbone sub-state populations and sugar pucker populations were ob-
served in longer simulations. In addition to not being able to always maintain south puckers where found in RNA
structures, multiple groups noticed a tendency for the RNA backbone to shift, putting ) into the high-anti region
which leads to an opening of the duplex structure into a ladder-like configuration. Again, QM methods at various
levels were employed to improve the y distribution using relevant model systems. The most tested ¥ modifications
are the “OL” modifications used in ff14SB.[49, 55] On top of the OL modifications, Bergonzo & Cheatham found
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that with modified phosphate parameters from Steinbrecher et al.[S0] and an improved water model (OPC), better
agreement with NMR data for RNA tetranucleotide populations was observed.[56] In this parameter set, a new
atom type for O4’ was created named OR (previously type OS). This allowed modification of O2 and OS atom
types to LJ=1.7493, 0.2100 and 1.7718, 0.1700; previous values = 1.6612, 0.2100 and 1.6837, 0.1700.

An alternative available with Amber is the Yildirim ¥ modifications (and also related modifications called TOR
which alter £/§ as well)[51, 57, 58], and a systematic assessment and validation of these newer ) modifications
is underway on a large series of RNA tetraloop structures. Note that small changes to a particular dihedral may
lead to alteration in properties of related dihedrals, and may have unintended consequences. For example, the
[99-bscO modifications tend to lock RNA sugar puckers mainly in the north, even with nucleotides in particular
sequence contexts that prefer southern conformations. Moreover, the ¥ modifications tend to further destabilize y
= trans. This suggests that to reliably improve the nucleic acid dihedrals, a more systematic approach across many
dihedrals with simultaneous fitting may be more appropriate. Moreover, we no longer fully support the idea that
parameters are transferable between DNA and RNA, or between purines and pyrimidines. For example, the ff99-
OL modifications (with or without ff99-bsc0) improve the modeling of RNA, but lead to issues with DNA, most
notably with quadruplex structures. Therefore recent work has focused on separate y modifications for DNA.[59]

An alternative set of torsions for RNA, fit to quantum calculations has recently been reported by the Rochester
group,[52] and can be loaded with the 1eaprc.RNA.ROC file. More extensive modifications are contained in the
“DE Shaw” force field,[53], which can be loaded with leaprc.RNA.Shaw.

3.2.2. DNA
’ Name \ Modification Notes
ffo4 Original force field file Obsolete
98 Modified charge set Obsolete
ff99 Updated charge set Foundation for all current ff’s
bscO Barcelona /7y backbone modification [47]
e/C OL1 €/¢ modification for DNA improvement for DNA, no effects for RNA [60]

x OL4 x modification tuned for DNA [59]

B OL1 B dihedral modification tuned for DNA | improvement for DNA, no effects for RNA[61]
OLI5 (e/COLI+)OLA+BOLI) [62]
bscl Major update to bscO [63]

Table 3.2.: Force field name and modifications for simulating nucleic DNA. Recommended variants are listed in
italics.

As noted in Table 3.2, most current DNA force fields are based on parameters and charges that go back to
Amber’s ff99. A new set of parameters for the £/ dihedral[60] and for the 8 dihedral[61] torsion for DNA have
been developed using QM methods that include the solvation effects implicitly. This set of parameters have been
tested with several double-stranded DNA systems including the Dickerson-Drew dodecamer, A-tracs, CG-rich
duplexes, Z-DNA and G-quadruplexes. These modifications increase the population of BII substate by stabilizing
the €/ = g-/t state and renders higher values for the helical twist in the tested systems. In combination with the y
modification for DNA (yOLA4, [59]), the force field generates structures that suggest a better agreement with NMR
data. The reader should pay careful attention to the use of the ¥ modifications, since the naming convention of the
authors is the same for RNA and DNA.

The combination of the three dihedral updates (¢/{OL1+xOL4+BO0L1) are now termed OL15 [62], which are
available sourcing the file leaprc.nucleic.OL15. More details about the OL15 force field development and test
cases is available in http://fch.upol.cz/ff_ol/.

In a parallel effort, the group at the Barcelona Supercomputing Center have updated the well-known bscO mod-
ification, now termed bscl.[63] This updated version of the bscO modification has also been developed using
implicit solvation model and rigorous QM methodology. As with the OL15 variant, the updated bscl force field
increases the helical twist and yields double stranded DNA structures that are in better agreement with experimen-
tal structures. Testing of the bscl force field has been performed using more than 130 systems, including single
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and double stranded DNA, hairpin structures, DNA-protein complexes, G-quadruplexes and more. This can be
accessed by sourcing leaprc.nuclic.bscl; additional information about the bscl force field development and test
cases is available in http://mmb.irbbarcelona.org/ParmBSC1l/

Details of the different modifications available for DNA are presented in Table 3.2. Regarding the performance
of OL15 and bscl for DNA, preliminary testing comparing both force fields strongly suggest that both variations
perform in a similar way and are improvements over the previous commonly bscO modification.[62] We refer the
reader to the original articles of each force field to better understand the details and performance between each
variant.

3.2.3. Some nonstandard situations

Nucleic acid residues use the new (version 3) PDB nomenclature: “DC” is used for deoxy-cytosine, and “C”
for cytosine in RNA, etc. Earlier force fields (which are not recommended!) use “RC” for the RNA version. If
you want a single, nucleoside, use “CN”, etc. For a single nucleotide, use the following command in LEaP:

cnuc = sequence { OHE C3 }

and analogs for other bases. Note that this will construct a protonated 5 phosphate group, which may not be what
you want.

Some RNA molecules may have a 5’ residue with an attached phosphate group. This requires a bit-of
hand-editing of your PDB file. Suppose your 5’ end looks like this (taken from PDB code 2DXI):

ATOM 1 oP3 G C 501 19.050 87.190 73.029 1.00 73.49 (0]
ATOM 2 P G C 501 18.499 87.676 71.706 1.00 75.79 P
ATOM 3 oPl G C 501 16.984 87.888 71.715 1.00 73.44 (o)
ATOM 4 OP2 G C 501 18.979 86.828 70.515 1.00 77.51 (0]
ATOM 5 05’ G C 501 19.153 89.150 71.502 1.00 63.81 (0]
ATOM 6 C5’ G C 501 18.729 90.260 72.301 1.00 48.63 C
You need to edit the first atom, changing its residue name to OHE:
ATOM 1 OP3 OHE C 500 19.050 87.190 73.029 1.00 73.49 (o)
ATOM 2 P G C 501 18.499 87.676 71.706 1.00 75.79 P
ATOM 3 oOoPl G C 501 16.984 87.888 71.715 1.00 73.44 (o)
ATOM 4 OP2 G C 501 18.979 86.828 70.515 1.00 77.51 (0]
ATOM 5 05’ G C 501 19.153 89.150 71.502 1.00 63.81 (0]
ATOM 6 C5’ G C 501 18.729 90.260 72.301 1.00 48.63 C

Note that this is not necessarily optimal: the 5’ terminal phosphate will have the same charges as the phosphate in
a phosphodiester linkage between residues along the chain. If the properties of the 5’ terminal group are especially
important to you, you may need to construct a special residue here. Also note (as noted above), this constructs a
protonated terminal phosphate (net charge of -1); again you will need to construct special residues it you wish to
have a deprotonated phosphate at the 5° position.

3.3. Carbohydrates

GLYCAMOG is a consistent and transferable parameter set for modeling carbohydrates,[64] and glycoconjugates.[65,
66] The core philosophy of the force field development process is that parameters should be: (1) be transferable
to all carbohydrate ring formations and sizes, (2) be self-contained and therefore readily transferable to many
quadratic force fields, (3) not require specific atom types for o- and $-anomers, (4) be readily extendible to carbo-
hydrate derivatives and other biomolecules, (5) be applicable to monosaccharides and complex oligosaccharides,
and (6) be rigorously assessed in terms of the relative accuracy of its component terms.

When combining GLYCAMO06 with AMBER parameters for other biomolecules, parameter orthogonality is
ensured by assigning unique atom types for GLYCAM. In order to facilitate combining GLYCAMO6 with other
AMBER parameter sets for other biomolecules, a variation on the GLYCAM atom types has been introduced in
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which the new name consists of an uppercase letter followed by second character, either a number or lowercase
letter. For example the GLYCAM "CG" atom type has been changed to "Cg"; "HO" is now represented as "Ho",
and so forth.

As soon as new parameters are generated, or alterations are made to existing parameters, a new version of
GLYCAM is released. Updated versions that introduce new functionality are denoted using a letter suffix (i.e.
GLYCAMO6a, 06b, etc.). Each release is accompanied with an associated text file that summarizes the new
functionality or alteration. For example, a particularly important update, released in GLYCAMOG6e, altered the
endo-anomeric torsion term (Cg-Os-Cg-Os) in order to more accurately reproduce the populations arising from
ring flips (*C; to !Cy4 etc.). This particular case suggested the need to be able to independently characterize the
exo- and endo-anomeric effect, which was achieved by assigning different atom types (Oa and Oe) to represent the
endo-anomeric and exo-anomeric oxygen atoms, respectively.

In another important update (GLYCAMO06g), a small van der Waals term was applied to all hydroxyl hydrogen
atoms (Ho) to address a rare, but catastrophic, situation that can arise during MD simulations. In certain carbohy-
drate (and potentially other) configurations, a hydroxyl proton may be structurally constrained to being very close
to a carboxylate moiety. During an MD simulation of such a system, an oscillatory motion can begin between the
hydroxyl proton and the negative charge site, leading ultimately to failure of the simulation as the proton collapses
onto the negatively charged moiety. The small van der Waals term (Ho, R* = 0.2000 A, & = 0.0300 kcal/mol)
is just large enough to add sufficient repulsion to prevent this behavior, while not being large enough to perturb
properties such as hydrogen bond lengths.

The GLYCAM force field family, especially, GLYCAMO6, has been extensively employed in simulations of
biomolecules by the larger scientific community.[67-70] The updated GLYCAM parameters and documentation
are available for download at the GLYCAM-Web site (www.glycam.org). Also available on the website are tools
for simplifying the generation of structure and topology files for performing simulations of oligosaccharides,
glycoconjugates and glycoproteins. GLYCAM-Web has been integrated into several glycomics databases, such as
the Consortium for Functional Glycomics (www.functionalglycomics.org).

GLYCAMO6 force field
Always check glycam.org/params for more recent versions and new functionalities.

leaprc.GLYCAM 063j-1 LEaP configuration file for use of GLYCAMO06

with carbohydrates alone or in combination

with the ff14SB force field.
GLYCAM 063j.dat Parameters for oligosaccharides
GLYCAM 06j-1.prep Structures and charges for glycosyl residues
GLYCAM_lipids_06h.prep Structures and charges for some lipid residues
GLYCAM amino_063j_12SB.lib Glycoprotein libraries compatible with £f14SB.
GLYCAM aminoct_063j_12SB.lib
GLYCAM_aminont_06j_12SB.1lib

GLYCAMOGEP force field using lone pairs (extra points)

GLYCAM_06EPb.dat Parameters for oligosaccharides
GLYCAM_O06EPb.prep Structures and charges for glycosyl residues
leaprc.GLYCAM 06EPb LEaP configuration file for GLYCAM-06EP

GLYCAM Force Field Parameters Download Page
http://www.glycam.org/params

GLYCAM_06j-1.prep contains prep entries for all carbohydrate residues and GLYCAM_lipids_06h.prep contains
prep entries for some lipid residues (although for lipid membrane simulations we recommend you use the Amber
Lipid 17 force field). GLYCAM_O6EPb.prep contains prep entries for all carbohydrate residues available for
modeling with extra points.

For linking glycans to proteins, libraries containing modified amino acid residues (Ser, Thr, Hyp, and Asn) must
be loaded. To build a glycoprotein using {ff14SB, GLYCAM_amino_06j_12SB.lib GLYCAM_aminont_06j_12SB.lib
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Version | Release Date Contributors \ Change Summary \

Modified all parameters to be compatible with ff14SB.

j 15 Feb., 2014 BLF These files may not be compatible with older protein and
nucleic acid force fields.

i 27 Aug., 2013 AKN Added two new monosaccharides to the prep file.
*Changed atom type naming to be orthogonal to other

h 20 Oct., 2010 MBT, BLF force ﬁelds. Added HO van der Waals parameters. Set
protein-related parameter values to their parm99
counterparts. Updated N-sulfation parameters.
* 1,4-scaling terms added to parameter file. Angle and

g 20 Oct., 2010 MBT torsion updates for pyranose rings, N-sulfate, phosphate
and sialic acid.

f 3 Feb., 2009 MBT * Corrected a typo in O-Acetyl term

R 28 May, 2008 MBT Upda'ted 'gly0031d1c linkage terms to optimize ring
puckering in pyranoses

d 12 May, 2008 | SPK, MBT, ABY | Terms for thiol glycosidic linkages

c 21 Feb., 2008 MBT, ABY ~Addlt‘10nal (published) terms for some lipid
simulations[71]

b 10 Jan., 2008 MBT, ABY 1'\11'<an'es, alkgnes, amide and amino groups for some
lipid simulations[71]

a 24 Apr., 2005 ABY Sulfates & phosphates for carbohydrates

Table 3.3.: Version change summary for the GLYCAM-06 force field. *Previously released parameters were
changed. See full release notes at glycam.org/params. SPK: Sameer P. Kawatkar. MBT: Matthew
B. Tessier. ABY: Austin B. Yongye. BLF: B. Lachele Foley. AKN: Anita K. Nivedha

and GLYCAM_aminoct_06j_12SB.1ib must be loaded and the desired protein force field must also be loaded.
Amino acid libraries designed for linking carbohydrates modeled with extra points are not currently available.

3.3.1. File versioning

Beginning on 15 September, 2011, a new versioning system was implemented for Glycam parameters. Files
produced before that date will not necessarily conform to the new system. In the new system, all files containing
parameters are versioned. Users should check their contents and replace them with recent versions as appropriate.

The new versioning system employs letters and numbers. If a parameter set contains new functionality (e.g.,
the addition of new parameters) or fundamental changes (e.g., atom type name reassignments), a letter will be
appended to its name. If the new version contains corrections (e.g., for typographical errors), its name will be
appended with a number. See glycam.org/params for more documentation and examples.

Researchers are also encouraged to read the version change documentation available on the GLYCAM Parame-
ters download page under "Documents." In this document, the changes specific to each version release are detailed.
The changes are also summarized here in Table 3.3.

3.3.2. Atom type name changes

Beginning with versions g, Glycam atom type names will adopt a standard designed to keep them from over-
lapping with other force fields. In most cases, Glycam’s type names will consist of two characters, one upper-case
followed by one lower-case. Because of this, leaprc files, lib files and prep files from versions prior to g will be
incompatible with current versions.

Note that some type names will not reflect the new Glycam type standard, despite being present in the Glycam
force field files, for example in the files for linking glycans to amino acid residues. In these cases, Glycam will use
the type name appropriate to the external force field. Parameters will be introduced only to the extent necessary
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to provide a link between the force fields. Since the associated parameters will also include Glycam types, they
should only affect the intersections between the two force fields.

Beginning with versions j, atom type names for linking to amino acids are compatible with ff14SB. Older
versions of protein and nucleic acid force fields might not be compatible.

3.3.3. General information regarding parameter development

In GLYCAM-06,[64] the torsion terms have now been entirely developed by fitting to quantum mechanical
data (B3LYP/6-31++G(2d,2p)//HF/6-31G(d)) for small-molecules. This has converted GLYCAM-06 into an addi-
tive force field that is extensible to diverse molecular classes including, for example, lipids and glycolipids. The
parameters are self-contained, such that it is not necessary to load any AMBER parameter files when modeling
carbohydrates or lipids. To maintain orthogonality with AMBER parameters for proteins, notably those involving
the CT atom type, tetrahedral carbon atoms in GLYCAM are called Cg (C-GLYCAM, CG in previous releases).
Thus, GLYCAM and AMBER may be combined for modeling carbohydrate-protein complexes and glycoproteins.
More information on atom type names is available in 3.3.2 . Because the GLYCAM-06 torsion terms were de-
rived by fitting to data for small, often highly symmetric molecules, asymmetric phase shifts were not required
in the parameters. This has the significant advantage that it allows one set of torsion terms to be used for both
a- and f-carbohydrate anomers regardless of monosaccharide ring size or conformation. A molecular develop-
ment suite of more than 75 molecules was employed, with a test suite that included carbohydrates and numerous
smaller molecular fragments. The GLYCAM-06 force field has been validated against quantum mechanical and
experimental properties, including: gas-phase conformational energies, hydrogen bond energies, and vibrational
frequencies; solution-phase rotamer populations (from NMR data); and solid-phase vibrational frequencies and
crystallographic unit cell dimensions.

3.3.4. Scaling of electrostatic and nonbonded interactions

As in previous versions of GLYCAM,[2] the parameters were derived for use without scaling 1-4 non-bonded
and electrostatic interactions. Thus, in sander, pmemd, and so on, the simulation parameters scnb and scee should
typically be set to unity. We have shown that this is essential in order to properly treat internal hydrogen bonds,
particularly those associated with the hydroxymethyl group, and to correctly reproduce the rotamer populations
for the C5-C6 bond.[72] Beginning with Amber 11, it is now possible to employ mixed scaling of the scnb and
scee parameters. Anyone wishing to simulate systems containing both carbohydrates and proteins should use the
new mixed scaling capability. To do this, any scaling factors that differ from the default must be included in the
parameter file. Beginning with the GLYCAM_06g parameter file shipped with Amber 11, these factors are already
included. Anyone wishing to employ earlier parameter sets must modify the files.

3.3.5. Development of partial atomic charges

As in previous versions of GLYCAM, the atomic partial charges were determined using the RESP formalism,
with a weighting factor of 0.01,[64, 73] from a wavefunction computed at the HF/6-31G(d) level. To reduce
artifactual fluctuations in the charges on aliphatic hydrogen atoms, and on the adjacent saturated carbon atoms,
charges on aliphatic hydrogens (types HC, H1, H2, and H3) were set to zero while the partial charges were fit
to the remaining atoms.[74] It should be noted that aliphatic hydrogen atoms typically carry partial charges that
fluctuate around zero when they are included in the RESP fitting, particularly when averaged over conformational
ensembles.[64, 75] In order to account for the effects of charge variation associated with exocyclic bond rotation,
particularly associated with hydroxyl and hydroxylmethyl groups, partial atomic charges for each sugar were
determined by averaging RESP charges obtained from 100 conformations selected evenly from 10-50 ns solvated
MD simulations of the methyl glycoside of each monosaccharide, thus yielding an ensemble averaged charge
set.[64, 75]
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3.3. Carbohydrates

Carbohydrate Pyranose | Furanose
o/B,p/L | /B, D/L
Arabinose yes yes
Lyxose yes yes
Ribose yes yes
Xylose yes yes
Allose yes
Altrose yes
Galactose yes a
Glucose yes a
Gulose yes
Idose a
Mannose yes
Talose yes
Fructose yes yes
Psicose yes yes
Sorbose yes yes
Tagatose yes yes
Fucose yes
Quinovose yes
Rhamnose yes
Galacturonic Acid yes
Glucuronic Acid yes
Iduronic Acid yes
N-Acetylgalactosamine yes
N-Acetylglucosamine yes
N-Acetylmannosamine yes
Neu5Ac yes, b yes,b
KDN a,b a,b
KDO a,b a,b

Table 3.4.: Current Status of Monosaccharide Availability in GLYCAM. (a) Currently under development. (b) Only
one enantiomer and ring form known.
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3.3.6. Carbohydrate parameters for use with the TIP5P water model

In order to extend GLYCAM to simulations employing the TIP-5P water model, an additional set of carbohydrate
parameters, GLYCAM-06EP, has been derived in which lone pairs (or extra points, EPs) have been incorporated
on the oxygen atoms.[76] The optimal O-EP distance was located by obtaining the best fit to the HF/6-31g(d)
electrostatic potential. In general, the best fit to the quantum potential coincided with a negligible charge on the
oxygen nuclear position. The optimal O-EP distance for an sp3 oxygen atom was found to be 0.70 A; for an sp2
oxygen atom a shorter length of 0.3 Awas optimal. When applied to water, this approach to locating the lone pair
positions and assigning the partial charges yielded a model that was essentially indistinguishable from TIP-5P.
Therefore, we believe this model is well suited for use with TIP-5P.[76] The new files are named O6EP (originally
04EP), as they have been corrected for numerous typographical errors and updated to match current naming and
residue structure conventions.

3.3.7. Carbohydrate Naming Convention in GLYCAM

In order to incorporate carbohydrates in a standardized way into modeling programs, as well as to provide a stan-
dard for X-ray and NMR protein database files (pdb), we have developed a three-letter code nomenclature. The
restriction to three letters is based on standards imposed on protein data bank (PDB) files by the RCSB PDB Ad-
visory Committee (www.rcsb.org/pdb/pdbac.html), and for the practical reason that all modeling and experimental
software has been developed to read three-letter codes, primarily for use with protein and nucleic acids.

As a basis for a three-letter PDB code for monosaccharides, we have introduced a one-letter code for monosac-
charides (Table 3.5).[77] Where possible, the letter is taken from the first letter of the monosaccharide name.
Given the endless variety in monosaccharide derivatives, the limitation of 26 letters ensures that no one-letter
(or three-letter) code can be all encompassing. We have therefore allocated single letters firstly to all 5- and 6-
carbon, non-derivatized monosaccharides. Subsequently, letters have been assigned on the order of frequency of
occurrence or biological significance.

Using three letters (Tables 3.6 to 3.8), the present GLYCAM residue names encode the following content:
carbohydrate residue name (Glc, Gal, etc.), ring form (pyranosyl or furanosyl), anomeric configuration (¢ or f3,
enantiomeric form (D or L) and occupied linkage positions (2-, 2,3-, 2,4,6-, etc.). Incorporation of linkage position
is a particularly useful addition, since, unlike amino acids, the linkage cannot otherwise be inferred from the
monosaccharide name. Further, the three-letter codes were chosen to be orthogonal to those currently employed
for amino acids.
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3.3. Carbohydrates

Carbohydrate” One letter code” | Common Abbreviation
1 D-Arabinose A Ara
2 D-Lyxose D Lyx
3 D-Ribose R Rib
4 D-Xylose X Xyl
5 D-Allose N All
6 D-Altrose E Alt
7 D-Galactose L Gal
8 D-Glucose G Glc
9 D-Gulose K Gul
10 D-Idose 1 Ido
11 D-Mannose M Man
12 D-Talose T Tal
13 D-Fructose C Fru
14 D-Psicose P Psi
15 D-Sorbose B¢ Sor
16 D-Tagatose J Tag
17 D-Fucose (6-deoxy D-galactose) F Fuc
18 | D-Quinovose (6-deoxy D-glucose) Q Qui
19 | p-Rhamnose (6-deoxy D-mannose) H Rha
20 D-Galacturonic Acid o? GalA
21 D-Glucuronic Acid z4 GlcA
22 D-Iduronic Acid u¢ IdoA
23 D-N-Acetylgalactosamine v GalNac
24 D-N-Acetylglucosamine Y4 GIcNAc
25 D-N-Acetylmannosamine wd ManNAc
26 N-Acetyl-neuraminic Acid s NeuNAc, NeuSAc
KDN KN4 KDN
KDO KO KDO
N-Glycolyl-neuraminic Acid SGed NeuNGc, Neu5Gce

Table 3.5.: The one-letter codes that form the core of the GLYCAM residue names for monosaccharides “ Users
requiring prep files for residues not currently available may contact the Woods group (www.glycam.org)
to request generation of structures and ensemble averaged charges. "Lowercase letters indicate L-
sugars, thus L-Fucose would be “f”, see Table 3.8 . “Less common residues that cannot be assigned
a single letter code are accommodated at the expense of some information content. *Nomenclature
involving these residues will likely change in future releases.[77] Please visit www.glycam.org for the
most updated information.
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a—D-Glep B—D-Galp o—D-Arap B—D-Xylp
Linkage Position | Residue Name | Residue Name | Residue Name | Residue Name

Terminal” 0GA? OLB 0AA 0XB

1-¢ 1GAS ILB 1AA 1XB

2- 2GA 2LB 2AA 2XB

3- 3GA 3LB 3AA 3XB

4- 4GA 4LB 4AA 4XB
6- 6GA 6LB

2,3- ZGA? ZLB ZAA ZXB

2,4- YGA YLB YAA YXB
2,6- XGA XLB

3,4- WGA WLB WAA WXB
3,6- VGA VLB
4,6- UGA ULB

2,3,4- TGA TLB TAA TXB
2,3,6- SGA SLB
2,4,6- RGA RLB
3,4,6- QGA QLB
2,3,4,6- PGA PLB

Table 3.6.: Specification of linkage position and anomeric configuration in D-hexo- and D-pentopyranoses in three-
letter codes based on the GLYCAM one-letter code “In pyranoses A signifies o.-configuration; B = J.
bPreviously called GA, the zero prefix indicates that there are no oxygen atoms available for bond
formation, i.e., that the residue is for chain termination. €Introduced to facilitate the formation of a
1-1"linkage as in a-D-Glc-1-1"-0-D-Gle {1GA 0GA}. “ For linkages involving more than one position,
it is necessary to avoid employing prefix letters that would lead to a three-letter code that was already
employed for amino acids, such as ALA.

a-D-Glcf B-D-Manf a-D-Araf B-D-Xylf
Linkage position | Residue name | Residue name | Residue name | Residue name
Terminal 0GD OMU 0AD 0XU
1- 1GD IMU 1AD 1XU
2- 2GD 2MU 2AD 2XU
3- 3GD 3MU 3AD 3XU
etc. etc. etc. etc. etc.

Table 3.7.: Specification of linkage position and anomeric configuration in D-hexo- and Dpentofuranoses in three-
letter codes based on the GLYCAM one-letter code. In furanoses D (down) signifies o.; U (up) = B.

o-L-Glcp B-L-Manp o-L-Arap B-L-Xylp
Linkage position | Residue name | Residue name | Residue name | Residue name
Terminal OgA OmB 0aA 0xB
1- 1gA ImB laA 1xB
2- 2gA 2mB 2aA 2xB
3- 3gA 3mB 3aA 3xB
etc. etc. etc. etc. etc.

letter codes.

Table 3.8.: Specification of linkage position and anomeric configuration in L-hexo- and Lpentofuranoses in three-




3.4. Lipids

3.4. Lipids

Biological processes in the human body are dependent on highly specific molecular interactions. The vast
majority of the interactions take place in compartments within the cell, and an understanding of the behavior of
the membranes that compartmentalize and enclose the cell is therefore critical for rationalizing these processes.
Biological membranes are complex structures formed mostly by lipids and proteins. For this reason lipid bilay-
ers have received a lot of attention both computationally and experimentally for many years.[78, 79] The vital
role of cell membranes is underlined by the estimation that over half of all proteins interact with membranes, ei-
ther transiently or permanently.[80] Further, G protein-coupled receptors embedded in the membrane account for
50-60% of present day drug targets, and membrane proteins as a whole make up around 70%.[81] Even so, only
685 resolved unique structures of membrane embedded proteins, out of a total of 65 500 searchable entries (after
removing redundant structures), exist in the Protein Data Bank (April 2017) reflecting the difficulties in studying
membrane-associated proteins experimentally, making them prime targets for simulation.

Prior to 2012, the only force field parameters for lipids distributed with AmberTools were part of the Gly-
cam force field and were limited in scope.[71] Traditionally, lipid simulations with Amber have either employed
the Charmm parameters, via support for the Charmm force fields through the Chamber package[82] or through
attempts to adapt the General Amber Force Field (GAFF) with limited success.

In 2012, Amber greatly expanded support for simulation of lipids. This includes the development of a modular
framework for lipid simulations and initial parameterization within the LIPID11 force field[83] as well as a careful
refinement of the non-bonded parameters and associated torsion terms within the GAFF force field for specific
application to lipids.[84] The latter, GAFFLipid, was the first lipid parameter set based on the Amber force field
equation to support simulation of lipid bilayers in the tensionless NPT ensemble while the former, LIPID11, pro-
vided the first modular framework for constructing lipid simulations analogous to the Amber amino and nucleic
acid force fields. Together these developments have made simulation of phospholipids with AMBER substantially
easier. LIPID14 was released in 2014 [85] and represented a major advancement over the previous Amber compat-
ible lipid force fields for lipid bilayer simulations in the NPT ensemble without the need for an artificial constant
surface tension term. Validation of the LIPID14 parameters were provided through extensive self-assembly simu-
lations [86, 87]. Inclusion and validation of parameters for cholesterol [88] represented an important addition to
the lipid parameter set, allowing even more complex lipid containing systems to be simulated. LIPID17 is the most
recent release of Amber lipid parameters. It builds upon the modularity of LIPID14 and provides an extension of
modular phospholipid residues to include anionic head groups and polyunsaturated tails. In the process the bonded
alkane parameters have been revised and updated by fitting to quantum energies. Furthermore, new partial charges
have been generated for all the head group residues in order to accommodate the anionic head groups whilst main-
taining consistency in the charge derivation approach. Details regarding the parameterization are given in Skjevik
et al. (######). The modular nature of the force field allows for many combinations of lipid head and tail groups as
well as rapid and standardized parameterization of additional lipids. LIPID17 was validated through bilayer sim-
ulations of eighteen different phospholipid types, for a total of 0.6 microseconds each without applying a surface
tension or constant area term. The lipid bilayer structural features compare favorably with experimental measures
such as area per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion.

In Amberl8, packmol-memgen was included into the list of available software, allowing the user to generate
membrane systems in a simple and automated way (12.6).

3.4.1. LIPID17: The Amber lipid force field

leaprc.lipidl?7 defines atom types and loads the files below
1lipidl7.1ib atoms, charges, and topologies for LIPID17 residues
lipidl7.dat LIPID17 force field parameters

The LIPID17 force field represented the logical next step in the development of an Amber lipid force field that
build on the modular nature of LIPID11[83] and LIPID 14 [85] to allow for tensionless lipid bilayer simulations in
Amber. LIPID17 (####) has been designed to be fully compatible with the other pairwise-additive protein, nucleic
acid, carbohydrate, and small molecule Amber force fields.

51



3. Molecular mechanics force fields

Description \ LIPID17 Residue Name
Acyl chain Lauroyl (12:0) LAL
Myristoyl (14:0) MY
Palmitoyl (16:0) PA
Oleoyl (18:1 n-9) OL
Stearoyl (18:0) ST
Arachidonoyl (20:4) AR
Docosahexaenoyl (22:6) DHA
Head group Phosphatidylcholine PC
Phosphatidylethanolamine PE
Phosphatidylserine PS
Phosphatidylglycerol PGR
Phosphaditic acid PH-
Other Cholesterol CHL

Table 3.9.: LIPID17 residue names.

Lipid 1 sn-1 tail residue
head group residue
sn-2 tail residue
TER card

Lipid 2 sn-1 tail residue
head group residue
sn-2 tail residue
TER card

Table 3.10.: LIPID17 PDB format for LEaP

LIPID17 is a modular force field for the simulation of phospholipids and cholesterol. To achieve this modularity
phospholipids are divided into interchangeable head group and tail group "residues."

Currently, there are seven tail group residues and five head group residues supported, as well as cholesterol, and
LEaP supports any combination of these lipid residues. The supported LIPID17 residues and their residue names
are listed in Table 3.9. LIPID17 can be used alone or in conjunction with other Amber force fields. The order
with which the various AMBER force fields are loaded along with LIPID17 should not matter. For example, to
load ff14SB and LIPID17 in LEaP use:

source leaprc.protein.ff14SB

source leaprc.lipidl?

LIPID17 PDB format

LIPID17 atom names and types are defined in Skjevik, et al[83], Dickson, et al[85], Madej et al[88] and Skjevik
et al (####).

A properly formatted lipid PDB can be loaded into LEaP. Each phospholipid molecule in LIPID17 is made up
of three residues. Atoms from each residue must be in contiguous blocks and ordered as described below in each
molecule. A TER card must be appended after all the atoms for each molecule. Table 3.10 specifies the residue
format for the PDB file loaded by LEaP in order to correctly define linker atoms.

The connectivity (CONECT records) section of the PDB is redundant and should be removed prior to loading
into LEaP. The head group and tail residues are linked together by the LEaP program after loading the lipid PDB
file.

PDB formatted structure files with alternative residue and atom names (such as Charmm C36) may be
converted to the LIPID17 naming convention by way of the script called charmmlipid2amber.py which is supplied
with AmberTools to convert Charmm C36 residue and atom names to LIPID17 nomenclature.

52



3.5. Solvents

charmmlipid2amber.py —i charmm_c36.pdb -o output 1lipidl7.pdb

Additionally, membrane systems can be prepared by means of the packmol-memgen included software (12.6).

3.5. Solvents

leaprc.water.<type> loads solvents.lib and the appropriate frcmod file

solvents.lib library for water, methanol, chloroform, NMA, urea
frcmod.tipdp Parameter changes for TIP4P.

frcmod.tip4pew Parameter changes for TIP4PEW.

frcmod. tip5p Parameter changes for TIP5P.

frcmod. spce Parameter changes for SPC/E.

frcmod. spceb Parameter changes for SPC/Eb.

frcmod. opc Parameter changes for OPC.

frcmod.opc3 Parameter changes for OPC3.

frcmod.pol3 Parameter changes for POL3.

frcmod. tip3pfb Parameter changes for the force-balance TIP3P model
frcmod.tip4pfb Parameter changes for the force-balance TIP4P model
frcmod.meoh Parameters for methanol.

frcmod.chel3 Parameters for chloroform.

frcmod.nma Parameters for N-methyacetamide.

frcmod.urea Parameters for urea (or urea-water mixtures).

Amber provides direct support for several water models.

There is no default, but TIP3P[89] will be used for residues with names HOH or WAT, following a long tradition.
Despite the fact that many properties of this old water model deviate significantly from those of real water, the
model has an impressive track record and is still a popular choice in biomolecular simulations. There is more
than one good reason behind this tenacity other than simple inertia[18]. In particular, many older force fields
were parametrized in simulations that used TIP3P as the solvent: errors in the solvent part of the total energy are
compensated, to an extent, by fitted parameters of the gas phase (solute) part. As a result, many existing force fields
are inherently biased towards TIP3P to various degrees. Replacing TIP3P with another water model without re-
parametrizing the underlying gas-phase force field may not necessarily lead to better accuracy of the biomolecular
simulation that might be expected to benefit from the more accurate water model. Fortunately, AMBER force fields
are not very strongly biased towards any specific water model, which makes the task of testing new models easier.
In recent years several new models appeared that describe the state of liquid water much more accurately than
TIP3P, these models showed significant improvements in outcomes of many types of biomolecular simulations,
even with older force fields. A recent addition to AMBER family of protein force fields, ff99SB[19], was developed
without an inherent bias towards a water model; OPC is recommended for use with this force field[19].

If you want to use water models other than TIP3P, execute the following LEaP commands after loading your
leaprec file:

WAT = PL3 (residues named WAT in pdb file will be POL3)
source leaprc.water.pol3

(The above is obviously for the POL3 model.) The solvents.lib file contains TIP3P,[89] TIP3P/F,[90] TIP4P,[89,
91] TIP4P/Ew,[92, 93] TIP5P,[94] OPC,[20] OPC3,[95], POL3[96], SPC/E[97], SPC/Eb[29], TIP3PFB[31] and
TIP4PFB[31] models for water; these are called TP3, TPF, TP4, T4E, TP5, OPC, OP3, PL3, SPC, SPC, FB3 and
FB4, respectively. (The SPC/E and SPC/Eb models are both called SPC: you just have to be sure to load the
appropriate frcmod file.) By default, the residue name in the prmtop file will be WAT, regardless of which water
model is used.

The “standard” leaprc files for tip3p, spce, tip4pew and opc also load the Joung/Cheatham monovalent ion
parameters (see below). If you wish to use other parameters, or to deal with divalent or other ions, you will need
to load the appropriate frcmod files.
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Amber has two flexible water models, one for classical dynamics, SPC/Fw[98] (called “SPF”) and one for
path-integral MD, gSPC/Fw[99] (called “SPG”). You would use these in the following manner:

WAT = SPG
loadAmberParams frcmod.gspcfw
set default FlexibleWater on

Then, when you load a PDB file with residues called WAT, they will get the parameters for gSPC/Fw. (Obviously,
you need to run some version of quantum dynamics if you are using gSPC/Fw water.)

The solvents.lib file, which is automatically loaded with many leaprc files, also contains pre-equilibrated boxes
for many of these water models. These are called POL3BOX, QSPCFWBOX, SPCBOX, SPCFWBOX, TIP3PBOX,
TIP3PFBOX, TIPAPBOX, TIPAPEWBOX, OPCBOX, OPC3BOX, and TIPSPBOX. These can be used as argu-
ments to the solvateBox or solvateOct commands in LEaP.

In addition, non-polarizable models for the organic solvents methanol, chloroform and N-methylacetamide are
provided,[100] along with a box for an 8M urea-water mixture. The input files for a single molecule are in
SAMBERHOME/dat/leap/prep, and the corresponding frcmod files are in SAMBERHOME/dat/leap/parm. Pre-
equilibrated boxes are in SAMBERHOME/dat/leap/lib. For example, to solvate a simple peptide in methanol, you
could do the following:

source leaprc.protein.ff14SB (get a standard force field)
loadAmberParams frcmod.meoh (get methanol parameters)

peptide = sequence { ACE VAL NME } (construct a simple peptide)
solvateBox peptide MEOHBOX 12.0 0.8 (solvate the peptide with meoh)
saveAmberParm peptide prmtop prmcrd

quit

Similar commands will work for other solvent models.

3.5.1. The OPC family of water models

OPC is a new non-polarizable, 4-point, 3-charge rigid water model.[20] Geometrically, it resembles TIP4P-like
models, although the values of OPC point charges and charge-charge distances are quite different. The model has
a single VDW center on the oxygen nucleus. The model is constructed based on the concept of optimal point
charge approximation; [101] the central idea of OPC is to distribute the point charges to best reproduce the 3
lowest order multipole moments of water molecule in liquid phase. The optimal values for the dipole i and the
square quadrupole moment Q7 [102] are determined as best fit values that reproduce key experimental properties
of water in liquid phase. The low dimensionality of the parameter space yu-Qr permits a virtually exhaustive
search. The linear quadrupole and the octupole moments[103] are fixed to values obtained from high quality QM
calculations.[102]

A full description of OPC and its properties can be found in Ref.[20]. For 11 key liquid state properties against
which water models are most often benchmarked, OPC is on average within 0.76% of the experiment (relative
error). This accuracy is dramatically better compared to the commonly used rigid models. For example, the
dielectric constant of TIP3P and TIP4PEw is 94 and 63.9 respectively, while OPC predicts it to be 78.4+0.6 (the
experimental value is 78.4). The reported OPC properties were computed using Amber 12 on GPUs with a time-
step of 2 fs, periodic boundary conditions, an 8 angstrom cut-off for nonbonded interactions, and PME for long
range electrostatics. SHAKE was used to constrain hydrogens. The rest of parameters are set to current Amber
defaults; note that these include accounting for the van der Waals interactions beyond the cut-off via a continuum
model (vdwmeth=1).

OPC in biomolecular simulations: Because of the improved accuracy in bulk properties, OPC delivers no-
ticeable accuracy improvement in practical biomolecular simulations, even with existing force-fields. Specifically,
OPC was found to yield quantitative agreement with NMR experiment for conformational populations of small
RNA fragments,[56, 104, 105] and therefore is a commonly used water model for RNA simulations. [106—108]
OPC has been shown to improve structural description of DNA dublex,[62] DNA G-quadruplex, [109] thermody-
namics of ligand binding,[110] small molecule hydration,[20] rotational dynamics of proteins, [111] simulations
of lipid monolayer, [112] and intrinsically disordered proteins.[42, 113]
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Ion parameters for OPC: Two sets of 12-6 LJ parameters for OPC water model (the 12-6 I0OD set and the
12-6 HFE set) for 3 monovalent ions (Na+, K+, CI-) have been developed by Li, Merz and co-workers; see
Section 3.6 for the definition and important usage suggestions. Our tests show that the deviation of the Ion-Oxygen
Distances (IODs) predicted using the 12-6 HFE set from the reference IOD values is within +0.2A. Comparing
these deviations to those reported for other ion parameter sets available, it seems that the magnitude of the deviation
is borderline acceptable, which means that the HFE set might also work in situations where 10D is formally
recommended. For Na+ the transferability is not an issue as Hydration Free Energy (HFE) and IOD parameters are
essentially the same. In situations where agreement of HFEs with one of the common experimental references is
critical, the use of OPC-specific parameters (the 12-6 HFE set) for K+, Na+, and CI- may be advisable. The IOD
parameter set are recommended to be used in the structural refinement. Additional OPC-specific ion parameters
have been reported recently.[114]

Based on our limited experience, it appears that the Joung/Cheatham ion parameters for TIP4P-EW (jc_tip4pew)[115]

may also be acceptable for OPC water model, especially when accurate reproduction of IODs is critical. One ad-
vantage of using the jc_tip4pew set is that it provides a consistent set of parameters for most biologically relevant
ions, not just K+, Na+, and CI-. Another advantage at the moment is that the set has already been tested in practice
with OPC model.[56, 110]

OPC3 water model: OPC3 — a 3-point rigid non-polarizable water model — is the latest addition to the fam-
ily, constructed using the same philosophy as OPC. Further details are available in Ref.[95]. Briefly, OPC3 is
significantly more accurate than the commonly used water models of same class (TIP3P, SPC/E) in reproducing a
comprehensive set of liquid bulk properties, over a wide range of temperatures. Relative to the 4-point OPC, OPC3
is somewhat less accurate comapred to experiment. Until model-specific ion parametrs have been developed, we
cautiosly recommend the Joung/Cheatham ion parameters previously developed for TIP3P to be used with OPC3.

3.6. lons

fremod.ionsjc_tip3p Joung/Cheatham ion parameters for TIP3P water

frcmod. ionsjc_spce same, but for SPC/E water

frcmod.ionsjc_tip4dpew same, but for TIP4P/EW water

frcmod.ionsllm 126_tip3p Li/Merz ion parameters for +1 and -1 ions in TIP3P water (12-6 normal us
frcmod.ionsllm_126_spce same, but in SPC/E water

frcmod.ionsllm 126_tip4pew same, but in TIP4P/EW water

fremod.ionsllm iod Li/Merz ion parameters for +1 and -1 ions (12-6 IOD set)
frcmod.ions2341m_126_tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water (12-6 normal u
frcmod.ions2341lm_126_spce same, but in SPC/E water

frcmod.ions2341m_126_tip4pew same, but in TIP4P/EW water

frcmod.ions2341m _hfe tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water (12-6 HFE set)
frcmod.ions2341lm_hfe_spce same, but in SPC/E water

frcmod.ions2341m_hfe_ tipdpew same, but in TIP4PEW water

frcmod.ions2341m _iod tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water (12-6 IOD set)
frcmod.ions2341lm_iod_spce same, but in SPC/E water

frcmod.ions2341m_iod tip4pew same, but in TIP4P/EW water

frcmod.ionsllm 1264 _tip3p Li/Merz ion parameters for -1 and +1 ions in TIP3P water (12-6-4 set)
frcmod.ionsllm_1264_spce same, but in SPC/E water
frcmod.ionsllm 1264 _tip4pew same, but in TIP4PEW water

frcemod.ions2341m_1264_tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water (12-6-4 set)
frcmod.ions2341m_1264_spce same, but in SPC/E water
frcmod.ions2341m_1264_tip4dpew same, but in TIP4PEW water

frcmod.ionsllm 126_hfe_ opc Li/Merz ion parameters for +1 and -1 ions in OPC water (12-6 HFE set)
frcmod.ionsllm_126_iod_opc Li/Merz ion parameters for +1 and -1 ions in OPC water (12-6 IOD set)
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atomic_ions.1lib topologies for monoatomic ions (new naming scheme)

ions94.1ib topologies for ions with the old naming scheme

In 2008, Joung and Cheatham created a consistent set of parameters for alkali halide ions, fitting solvation
free energies, radial distribution functions, ion-water interaction energies and crystal lattice energies and lattice
constants for non-polarizable spherical ions.[115, 116] These have been separately parametrized for each of three
popular water models, as indicated above.

Li, Merz and co-workers subsequently developed ion parameters for the monovalent, divalent, trivalent and
tetravalent ions for the 12-6 LJ nonbonded model and the 12-6-4 LJ-type nonbonded model for PME simulations.[117-
120] The experimental values they tried to reproduce are the experimental Hydration Free Energy (HFE) values,
Ion-Oxygen Distance (IOD) values and Coordination Number (CN) values of the first solvation shell. It was found
that it is hard to reproduce the three experimental values simultaneously by using the 12-6 LJ nonbonded model.
Since the charge-induced dipole interaction is proportional to ¥~* , a new term with format (C/r)* was added
to the 12-6 LJ potential, yielding a 12-6-4 LJ-type potential. The new potential with designed parameters could
reproduce the experimental HFE, IOD and CN values at the same time without significant compromise. Especially
for the highly charged metal ions, the 12-6-4 LJ-type nonbonded model performs much better than the 12-6 one
overall. Similar to Joung and Cheatam’s work, three water models were treated separately for the parameter design,
as indicated in the name of fremod files. Users can check the notes in the frcmod files to see the reference of each
parameter.

For the 12-6 LJ nonbonded model, three different parameter sets are available for each water model to meet
different requirements:

1. 12-6 normal usage set. This contains the HFE set of the monovalent ions (which could reproduce the ex-
perimental HFE),[120] the Compromise (CM) set of divalent ions (which could reproduce the experimental
relative HFE and CN values),[118] and the IOD set (which could reproduce the experimental IOD) for the
trivalent and tetravalent ions.[119] These parameters are recommended to be used in the normal MD
simulations. This is because for the monovalent ions the error of the 12-6 LJ nonbonded model is pretty
small (a CM set may not be needed since the HFE or IOD sets are pretty close to each other) while for the
trivalent and tetravalent metal ions the 12-6 LJ nonboned model has relatively big errors (a CM set could
have big errors for both HFE and IOD at this moment).

2. 12-6 HFE set to reproduce experimental HFE.[117, 119, 120] The HFE parameter set has limited error for
monovalent ions, while could have remarkable error for highly charged ions. Since we use the HFE set for
monovalent ions in the 12-6 normal usage set, we don’t have a specific HFE set parameter file for monovalent
ions.

3. 12-6 IOD set to reproduce experimental IOD.[117, 119, 120] Since the ion with certain parameter could re-
produce similar IOD values in the three water models, so the IOD set parameters of three water models were
designed identical (for the monovalent and divalent metal ions, while for the trivalent and tetravalent ions,
the IOD set are estimated for each water model separately). The IOD parameter set are recommended to
be used in the structural refinement or for structural property orientated investigation.

For the 12-6-4 LJ-type nobonded model, only one parameter set (12-6-4 set) designed for each of the three water
models. The 12-6-4 model has also been tested in mixed systems (such as nucleic acids, proteins and ionic solu-
tions) and have shown excellent transferability.[118—120] In the recent work of Panteva et al., the 12-6-4 model was
shown to give greaty improved structural, thermodynamic, kinetic and mass transport properties for Mg?*in water
relative to the 12-6 model..[121] The 12-6-4 model with the SPC/E water model performed exceptionally well for
simulating all properties in these benchmark calculations.[121] The parameters which are specifically designed for
the divalent metal ions with 12-6-4 LJ-type nonbonded model are shown as the 12-6-4 set above. These frcmod files
can be used to generate an original prmtop file. After obtaining the original prmtop file, you can use the add12_6_4
command in parmed to generate a prmtop with the additionalCy terms with the flag LENNARD_JONES_CCOEF. Please
see the add12_6_4 command14.2.2.6 in Subsection14.2.2 in the manual for detailed information. After obtaining
the prmtop with the additional C4 term, you can use sander or pmemd to run the simulation. Recently Penteva et
al. fine-tuned the C4 terms between several divalent metal ions (Mg>*, Mn?*, Zn?*, and Cd** ) and nucleic acid
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systems[122] while keep theCy4 terms between metal ions and water desgined by Li and Merz.[118] The new pa-
rameter set could better balance the interaction types in the nucleic acid systems, and been shown to be predictive in
identifying metal ion binding sites in nucleic acids[123], and are recommended to use in related modeling. An re-
lated tutorial is shown in the following webpage: "http://ambermd.org/tutorials/advanced/tutorial20/12_6_4.htm".

3.7. Modified amino acids and nucleotides

Parameters for phosphorylated amino acids [50, 124] to be used for ff99SB and older forcefields can be
obtained with the following command in LEaP:

source leaprc.phosaal0

Updated parameters have been developed for newer versions of the Stony Brook (SB) family of forcefields, with
new forcefield parameters for the side chains of phosphorylated amino acids [125], in addition to modified amino
acids [126] that are commonly used in experimental studies such as FRET and EPR. These side-chain parameters
are optimized for use with ff14SB and ff19SB by fitting against relative QM energies at the MP2/6-311+G**
level using our inhouse torsion fitting protocol[127]. Currently, side-chain parameters for phosphorylated serine,
histidine (deprotonated, protonated), tyrosine, and threonine are provided. For ff14SB, parameters for
phosphorylated amino acids [125] can be obtained with the following command in LEaP:

source leaprc.phosaal4SB

For ff19SB, parameters for phosphorylated amino acids [125] can be obtained with the following command in
LEaP:

source leaprc.phosaal9SB

The modified amino acids selenomethionine, cyano-phenylalanine, and azido-phenylalanine are used as FRET
quenchers. We also added parameters for the nitroxide spin-label methanesulfonothioate (MTSL), which is often
used in EPR experiments to probe distances. We also added parameters for acetylated lysine. For
selenomethionine, we fit new LJ parameters for selenium, as well as bond, angle, and dihedral parameters for the
C-Se bond. To use these parameters for ff14SB, the user can run the following command in LEaP:

source leaprc.protein.ff14SB_modAA
To use these parameters for ff19SB, the user can run the following command in LEaP:

source leaprc.protein.ff19SB_modAA

The ff19SB_modAA leaprc will load lib and frcmod files that have the CX to XC atom type conversion, the
backbone phi/psi dihedrals will be zeroed, and the LEU CMAP will be applied to all five residues.

The residue names for these modified amino acids are MSE (selenomethionine), AZF (azido-phenylalanine),
CYF (cyano-phenylalanine), CNX (MTSL) and ALY (acetylated-lysine). These residue names should match those
in the loaded file with the coordinates (e.g. PDB file). The residue names can also be used with the sequence
command in LEaP to create XYZ coordinates. Since the modifications for the phosphorylated and modified amino
acids are on the side chains and not the backbone, users can use these modifications with ff19SB.

Many post-translational modifications are also available at http.//selene.princeton.edu/FFPTM/. Parameters for
common modifications for RNA nucleotides [54]can by loaded with “source leaprc.modrna08”. Pointers to
other sets of Amber-compatible force fields may be found at the Amber web site, http://ambermd.org/.

Additional parameters for six common fluorescent protein chromophores—eGFP, eBFP, e YFP, eCFP, DsRed, and
mCherry—are available[128] by sourcing leaprc.xFPchromophores after sourcing the main force field leaprc file
(e.g. leaprc.protein.ffi4SB). This will allow seamless loading of PDB files containing fluorescent proteins provided
they follow standard naming of the chromophore: eGFP=CRO, eBFP=IIC, eYFP=CR2, eCFP=CRF, DsRed=
CRQ, and mCherry=CH6. The chromophore parameters are based on parm10 with the ff14SB modifications,
but also borrow heavily from GAFF. Both uppercase and lowercase atom types are utilized, so users should take
caution if mixing ff14SB with GAFF. See original reference[128] for details of implementation.
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3.8. Force fields related to semi-empirical QM

ParmAM1 and parmPMa3 are classical force field parameter sets that reproduce the geometry of proteins mini-
mized at the semi-empirical AM1 or PM3 level, respectively.[129] These new force fields provide an inexpensive,
yet reliable, method to arrive at geometries that are more consistent with a semi-empirical treatment of protein
structure. These force fields are meant only to reproduce AM1 and PM3 geometries (warts and all) and were
not tested for use in other instances (e.g., in classical MD simulations, etc.) Since the minimization of a pro-
tein structure at the semi-empirical level can become cost-prohibitive, a “preminimization” with an appropriately
parametrized classical treatment will facilitate future analysis using AM1 or PM3 Hamiltonians.

3.9. The GAL17 force field for water over platinum

leaprc.music Adds atom types and loads music.lib and music.dat
music.lib Library for metal surface atoms, virtual sites, and Drude rod particles.
music.dat Parameters for metal surface, Drude rod particles and LJ terms with water.

The GAL17 force field[130] was developed as part of the MuSiC project (Multiscale Simulations in Catalysis)
to describe the interaction of water and a Pt(111) surface. The GAL17 force field is implemented in the sander
program and can be combined with any water model. It provides a significant improvement over previously
existing force fields for Pt(111)/water interactions. Its well-balanced performance suggests that it is an ideal
candidate to generate relevant geometries for the metal/water interface, paving a way to a representative sampling
of the equilibrium distribution at the interface and to predict solvation free energies at the solid/liquid interface. At
present only parameters for water over Pt(111) are available, however, the force field is extensible to other metal
surface and solutes such as alcohols or sugar molecules that are typical substrates in catalytic upgrading of biomass
extracts. The GAL17 force field consists of

* A Lennard-Jones term between Pt atoms and water oxygen atoms that describes physisorption of water at
the surface.

* A polarized Gaussian term between Pt surface atoms and water oxygen atoms that describes chemisorption
at Pt top sites.

» Two terms that describe the angular dependence of the water/Pt surface interaction energy.

The GAL17 force field thus does not include explicit terms to describe image charge interactions, that is electro-
static interactions between charged particles and a metallic conductor, explicitly. Instead these effects are included
implicitly. In addition, it has been shown that image charge interactions account for less than 10% of the interac-
tion energy for water adsorbed at a Pt(111) surface[131]. Although not employed in GAL17, the music force field
library does contain parameters for a symmetric Drude rod model[131] that can be employed to investigate image
charge effects.

In GAL17 the platinum surface atoms have atom name Pt and residue name MET. The platinum surface must
be perpendicular to one of the Cartesian coordinate axes. Water molecules must be above the surface (coordinate
values larger than the metal atoms). Given a properly formatted pdb file that contains a platinum metal surface
and water molecules, one would use the GAL17 force field with TIP3P water in the following manner:

source leaprc.music

source leaprc.water.tip3p

ptwat = loadpdb ptwat.pdb
saveAmberParm ptwat prmtop inpcrd

This will load the correct LJ parameters between platinum and water oxygen atoms. In addition, one needs to
activate the Gaussian and angle adsorption correction terms via the &music namelist. This namelist also provides
an option to define the orientation of the surface plane. All force field parameters can be controlled via this
namelist, advanced users may want to look into the source code file music_module. F90 for all available options.
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At present there are no good parameters for platinum metal and simulations must therefore constrain the position
of the platinum atoms. This can be conveniently achieved with belly dynamics. A typical input would thus
contain

&cntrl
ibelly = 1, ! constrain atom positions
bellymask = ’@O,H1,H2’ ! let water molecules move
/
&music
pt_plane = 'yz’ ! default is 'xy’, i.e. surface in xy plane
/

When running simulations with sander in parallel, it may be advisable to orient the metal surface in the yz plane to
achieve better load balancing with the algorithm that is used by sander to distribute work across MPI tasks. Tests
that may serve as examples how to build input files and run simulations with GAL17 are contained in directory
SAMBERHOME/test/sander_music/.

3.10. Fluorescent dyes: AMBER-DYES in AMBER force field files

leaprc.amberdyes defines atom types and loads the files below
amberdyes.lib atoms, charges, and topologies for dye and linker residues
amberdyes .dat AMBER-DYES in AMBER force field parameters

The AMBER-DYES force field parameters[132] were implemented into the AMBER Software Suite[133]. Flu-
orescence ligands, so-called dyes, are widely used to investigate protein structures and dynamics, such as con-
formational changes, folding, association and dissociation of complexes, and enzymatic cycles. Dyes are usable
with multi-protein and single-protein systems. MD simulations with explicit dyes can improve the interpretation
of experimental results. Especially in Forster Resonance Energy Transfer (FRET) experiments, it is of utmost
importance to obtain precise information about the position and orientation of the dyes.

At the moment AMBER-DYES in AMBER covers 22 commonly used dyes and 6 linkers (see table below):

Dye Residue name | Linker residue Dye Residue name | Linker residue
Alexa Fluor 350 A35 CIR,LIR ATTO 390 T39 C2R, L1R
Alexa Fluor 488 A48 BIR, CIR, LIR ATTO 425 T42 C2R,LIR
Alexa Fluor 532 AS3 CIR,LIR ATTO 465 T46 C2R,L1R
Alexa Fluor 568 A56 CIR,LIR ATTO 488 T48 C3R,L2R
Alexa Fluor 594 A59 CIR,LIR ATTO 495 T49 C2R,L1R
Alexa Fluor 647 A64 BIR, C2R, L1IR ATTO 514 T51 C3R, L2R
Lumiprope Cy3 C3N C2R,L1R ATTO 520 T52 C2R,L1R
Lumiprope Sulfo-Cy3 C3w LIR ATTO 610 T61 C2R,LIR
Lumiprope Cy5 C5N C2R,LIR ATTO Thiol2 Tth C3R.L2R
Lumiprope Sulfo-Cy5 C5W LIR
Lumiprope Cy5.5 C55 C2R,LIR
Lumiprope Cy7 C7N LIR
Lumiprope Cy7.5 C75 L1R

Table 3.11.: AMBER-DYES in AMBER residue names.

To attach a linker / dye combination to your structure, hand-edit your PDB file, similarly to 3.2.3, and choose
an attachment point (e.g. residue 3):

ATOM 16 ND2 ASN E 2 3.872 30.857 39.020 1.00 13.86 N
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ATOM 17 N ILE E 3 5.739 34.298 36.056 1.00 14.08 N
ATOM 18 CA ILE E 3 4.144 36.258 39.575 1.00 7.14 (o]
ATOM 19 C ILE E 3 5.305 36.089 40.541 1.00 9.18 (o]
ATOM 20 O ILE E 3 5.662 37.000 41.282 1.00 12.86 (o]
ATOM 21 CB ILE E 3 4.933 36.389 35.001 1.00 13.23 (o]
ATOM 22 CGl ILE E 3 5.138 37.899 35.089 1.00 11.53 (o]
ATOM 23 CG2 ILE E 3 3.449 36.064 35.230 1.00 12.95 (o]
ATOM 24 CD1 ILE E 3 6.522 38.291 34.603 1.00 11.29 (o]
ATOM 25 N PHE E 4 4.507 35.854 38.224 1.00 11.91 N

Change the residue name (ILE) of the CA atom to the linker residue name (e.g. C1R) and delete the rest of the
residue:

ATOM 16 ND2 ASN E 2 3.872 30.857 39.020 1.00 13.86 N
ATOM 18 CA CIRE 3 4.144 36.258 39.575 1.00 7.14 C
ATOM 25 N PHE E 4 4.507 35.854 38.224 1.00 11.91 N

Append your PDF file with the C99 atom of your dye (e.g. Alexa Fluor 488) after the TER card:

ATOM 1317 N ASN E 163 19.398 31.025 41.679 1.00 38.17 N
TER 1318 ASN E 163
ATOM 1319 C99 A48 E 164

Use LEaP to load the AMBER-DYES in AMBER force field (at best by sourcinv leaprc.amberdyes, load your
updated PDB file, set a bond between the dye (always atom C99) and linker (always atom N99), and relax the
structure:

source leaprc.amberdyes

pdb = loadpdb 1481.pdb

bond pdb.A48.C99 pdb.ClR.N99
select pdb.A48

select pdb.C1lR

relax pdb

saveAmberParm pdb prmtop inpcrd

Additional settings are subject to personal preference. LEaP will produce a structure with a bonded dye usable for
MD simulations. Do, however, check the generated structure for sanity before using it.

3.11. Coarse-grained and multiscale simulations using the SIRAH force
field

In the following section, we briefly introduce the Coarse-Grained (CG) force field named SIRAH, which has
been completely ported to Amber and is compatible with multiscale simulations. SIRAH is a residue-based top-
down force field developed to reproduce structural properties of biomolecules, granting a speed up of above 2
orders of magnitude in comparison to all-atom simulations, with a reasonable compromise on accuracy.[134] Cur-
rently, it includes parameters for DNA,[135] phospholipids,[136] and proteins (including the most frequent post-
translational modifications.[137] Most recently, metal ions to be used as cofactors have been incorporated.[138]
Notably, SIRAH uses its own water model for explicit solvent called WatFour (WT4 for shortness), which also
includes monovalent electrolytes (Na+, K+, and CI-).[139] Four interconnected beads mimicking an elementary
water cluster constitute the WT4 water model. Since each bead carries a partial charge, WT4 creates its dielectric
permittivity, while the use of explicit electrolytes allows setting the ionic strength in the solution.

SIRAH uses the standard two-body classical Hamiltonian implemented in most common MD packages, and in
particular in Amber. Hence, common concepts as partial charges, atom types, and equilibrium distances/angles can
be straightforwardly transferred from atomistic to CG simulations. In this way, simulations performed with SIRAH
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can fully profit from GPU acceleration and analysis programs included in common MD packages. Mapping from
fully atomistic structures uses the position of real atoms to place interacting beads. Therefore, equilibrium values
in the bonded terms of the Hamiltonian are directly extracted from experimental or canonical structures, reducing
free parameters and facilitating the backmapping from CG to all-atoms.[140] Because of this, conformational
preferences (i.e., helical, extended beta or coil conformations in proteins, and the B-form in DNA) are introduced
in the bonded part of the Hamiltonian, obviating topological biases or the need to impose elastic network models
to fix secondary structures.

Since CG beads carry a partial charge, electrostatic interactions are calculated at long range via the Particle
Mesh Ewald method.

Perhaps the main difference with a fully atomistic force field regards the use of parameters for the calculation of
the Lennard-Jones potential. Although most of the interactions are calculated in the standard way, some of them
are not calculated using normal combination rules but set to specific values between pairs of beads. This provides
a flexible and convenient option to fix interactions that only apply to certain pairs of beads without modifying the
entire force field. In particular, this feature is used in SIRAH to fine-tune the balance between electrostatic and
Lennard-Jones interactions.

3.11.1. Available simulation schemes

Currently, the following CG and multiscale simulation schemes are available in SIRAH:

1. Explicit solvent CG simulations: they may include complex systems (Protein, DNA, Membranes, water, and
ions)[134, 136, 139]

2. Implicit solvent CG simulations: Currently available only for DNA using generalized Born model with
ighb=1.[135, 141]
3. Multiscale simulations: These can be performed in three fashions:

a) - Multiscale solvation: fine grain (FG, or fully atomistic) solute solvated with atomistic water + CG
water + supra CG water. This scheme is particularly well suited for highly solvated systems as virus
capsids[142] and is transferable to different force fields. Indeed, the WT4 water model has been tested
to work in combination with TIP3P, SPC and SPC/e water models.[143]

b) - Dual scale DNA simulations: this scheme can deal with single or double-stranded DNA in which
a certain number of nucleotides are defined at the atomistic level, while the rest is treated at the CG
level. Simulations can be performed in explicit or implicit solvent (see point 2). SIRAH parameters
have been developed to work with the bscO FG force field,[144, 145] and successfully checked for
compatibility with the newer bscl version.

¢) - QM/(FG/CG) simulations: this scheme profits from the possibility to run QM/MM simulations in
AMBER. The current implementation has been only tested in a Russian-doll fashion with a quantum
region surrounded by FG nucleotides nested in a CG double helix.[146]

3.11.2. Preparing your system for a CG simulation

In a nutshell, SIRAH is provided simply as another force field, plus a set of tools. In principle, all you need to
get started is previous knowledge on how to run an MD simulation with AMBER and a fully protonated structure.
Schematically, you can set up a CG simulation in three very simple steps.

1. Create a symbolic link in your working directory to ensure you will find the required files:

1n -s $AMBERHOME/dat/SIRAH/ .

2. Map the FG structure to CG. In its simplest form just type

./SIRAH/tools/CGCONV/cgconv.pl —-i your_protonated FG_file.pdb -o your_CG_file.pdb

This will return a CG PDB file with standard mapping options. All options are shown typing:
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./SIRAH/tools/CGCONV/cgconv.pl -h

In your Leap file you will have to:

AddPath SIRAH
source leaprc.sirah

For instance, a typical Leap file for the protein ICRN would look like:

# Load SIRAH force field
addPath ./sirah.amber
source leaprc.sirah
# Load model
protein = loadpdb 1CRN_cg.pdb
# Info on system charge
charge protein
# Set S-S bridges
bond protein.3.BSG protein.40.BSG
bond protein.4.BSG protein.32.BSG
bond protein.16.BSG protein.26.BSG
# Add solvent, counterions and 0.15M NaCl
# Tuned solute-solvent closeness for best hydration
solvateOct protein WT4BOX 20 0.7
addIonsRand protein NaWw 22 ClwW 22
# Save Parms
saveAmberParmNetcdf protein 1CRN_cg.prmtop 1CRN_cg.ncrst
# EXIT quit

Notice that three disulfide bonds are created. For this to work, the Cysteine names in your PDB file must be
edited from their thiol name (see comment on residue naming below).

Thereafter it is just normal Amber stuff!

Step-by-step tutorials on different cases of interest can be found in SAMBERHOME/dat/SIR AH/tutorial/. In
particular, using input files and initialization protocols contained therein is strongly suggested. Note that the version
included in this release corresponds to the version SIRAH 2.1. We recommend users to check and download the
latest updates from www.sirahff.com.

3.11.3. Tips and tricks.
Answers to frequently asked questions can be found at SAMBERHOME/dat/SIRAH/tutorial/SIRAH_FAQs.pdf.

1.
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The FG to CG mapping in SIRAH is intended to preserve physicochemically important interaction points
(for example, Watson-Crick interactions in DNA). Therefore, the positions of Hydrogen atoms are needed
in some residues, for instance, in Serine. Because of this, the starting point for CG simulation is a properly
protonated PDB file. Amber naming is fully supported.

An important point to keep in mind is that the use of a 12-6 term for the Lennard-Jones interaction in
a generally flatten CG surface may be potentially troublesome. Large steric repulsions in the absence of
topological restraints could produce spurious structural distortions particularly sensitive to steric clashes.
Hence, it is always a good idea (although not strictly necessary) to start with a well-relaxed set of starting
coordinates.

Although appealing, the coarse-graining philosophy based on keeping important interaction points has the
negative feature that a simple recipe for arbitrary molecular moieties does not exist, and new functional
groups must be tested case by case.

Solvation may be a potential source of problems. SIRAH uses Leap tools solvateBox or solvateOct to solvate
CG solutes. However, the relatively large size of a CG water molecule may create vacuum holes nearby the
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solute that can lead to strong (unscreened) electrostatic interactions in the solute’s surface. Similarly, when
adding electrolytes, the use of addlons or addlonsRand, which substitute one water molecule by one ion,
might be problematic if the ionic positions lie very close to the solute’s surface. Most likely, these problems
will be fixed during the initialization protocol described in the tutorials. However, as in any simulation, the
user should carefully check the initial set up.

5. In proteins, residues are named with lower "s" and the one-letter-code for amino acids (i.e., Alanine is sA). A
third letter may indicate a residue modification. For instance, sE or sD stands for a Glutamate or Aspartate,
respectively, while sEh or sDh correspond to protonated versions of those amino acids. Besides standard
amino acids, the following modifications are available.

a) sX: Cysteine in S-S bond

b) sCp: Palmitoylated cysteine.

¢) sEh, sDh: protonated acidic residues

d) sHe, sHd: Histidine protonated in epsilon and delta positions

e) sSp, sTp, sYp: phosphorylated aminoacids.

f) sKa, sKm: Acetylated and methylated Lysine, respectively.

6. Zwitterionic and non-zwitterionic terminals are available. However, unlike the protein force fields included

in AMBER, ACE and NME residues do not exist in SIRAH. Zwitterionic terminals are the default option
but neutral terminals can be set by renaming the corresponding residues from s[one-letter-code] to a[one-

letter-code] (Nt-acetylated) or m[one-letter-code] (Ct-amidated) after mapping. For example, to set a neutral
N-terminal Histidine protonated at N€ rename it from “sHe” to “aHe”.

7. Analysis: The Tcl script sirah_vmdtk.tcl provided in SAMBERHOME/dat/SIRAH/tools/ contains a series
of analysis and visualization tools to be used in VMD including backmapping, calculation of secondary
structures. Additionally, it provides visualization macros to obtain the right connectivity, sizes, etc.[140]

3.12. Obsolete force field files

The following files are included for historical interest. We do not recommend that these be used any more for
molecular simulations. The leaprc files that load these files have been moved to $AMBERHOME/dat/leap/cmd/oldff.

3.12.1. The Weiner et al. (1984,1986) force fields

all.in All atom database input.

allct.in All atom database input, COO- Amino acids.
allnt.in All atom database input, NH3+ Amino acids.
uni.in United atom database input.

unict.in United atom database input, COO- Amino acids.
unint.in United atom database input, NH3+ Amino acids.
parm91X.dat Parameters for 1984, 1986 force fields.

The ff86 parameters are described in early papers from the Kollman and Case groups.[147, 148] [The “parm91”
designation is somewhat unfortunate: this file is really only a corrected version of the parameters described in
the 1984 and 1986 papers listed above.] These parameters are not generally recommended any more, but may
still be useful for vacuum simulations of nucleic acids and proteins using a distance-dependent dielectric, or for
comparisons to earlier work. The material in parm91X.dat is the parameter set distributed with Amber 4.0. The
STUB nonbonded set has been copied from parmuni.dat; these sets of parameters are appropriate for united atom
calculations using the “larger” carbon radii referred to in the “note added in proof” of the 1984 JACS paper. If
these values are used for a united atom calculation, the parameter scnb must be defined in the prmtop file and
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should be set to 8.0; for all-atom calculations it should be 2.0. The scee parameter should be defined in the prmtop
file and set to 2.0 for both united atom and all-atom variants. Note that the default value for scee is now 1.2 (the
value for 1994 and later force fields); this must be explicitly defined in the prmtop file when using the earlier force
fields.

parm91X.dat is not recommended. However, for historical completeness a number of terms in the non-bonded
list of parm91X.dat should be noted. The non-bonded terms for I (iodine), CU (copper) and MG (magnesium) have
not been carefully calibrated, but are given as approximate values. In the STUB set of non-bonded parameters, we
have included parameters for a large hydrated monovalent cation (IP) that represent work by Singh et al.[149] on
large hydrated counterions for DNA. Similar values are included for a hydrated anion (IM).

The non-bonded potentials for hydrogen-bond pairs in ff86 use a Lennard-Jones 10-12 potential. If you want to
run sander with ff86 then you will need to recompile, adding -DHAS_10_12 to the Fortran preprocessor flags.

3.12.2. The Cornell et al. (1994) force field

all nuc94.in Nucleic acid input for building database.

all_amino94.in Amino acid input for building database.

all_aminoct94.in COO- amino acid input for database.

all _aminont94.in NH3+ amino acid input for database.

nacl.in Ion file.

parm94.dat 1994 force field file.

parm96.dat Modified version of 1994 force field, for proteins.
parm98.dat Modified version of 1994 force field, for nucleic acids.

Contained in ff94 are parameters from the so-called “second generation” force field developed in the Kollman
group in the early 1990s.[30] These parameters are especially derived for solvated systems, and when used with an
appropriate 1-4 electrostatic scale factor, have been shown to perform well at modeling many organic molecules.
The parameters in parm94.dat omit the hydrogen bonding terms of earlier force fields. This is an all-atom force
field; no united-atom counterpart is provided. 1-4 electrostatic interactions are scaled by 1.2 instead of the value
of 2.0 that had been used in earlier force fields.

Charges were derived using Hartree-Fock theory with the 6-31G* basis set, because this exaggerates the dipole
moment of most residues by 10-20%. It thus “builds in” the amount of polarization which would be expected in
aqueous solution. This is necessary for carrying out condensed phase simulations with an effective two-body force
field which does not include explicit polarization. The charge-fitting procedure is described in Ref [30].

The £f96 force field [150] differs from parm94.dat in that the torsions for ¢ and y have been modified in
response to ab initio calculations [151] which showed that the energy difference between conformations were
quite different than calculated by Cornell et al. (using parm94.dat). To create parm96.dat, common V1 and V2
parameters were used for ¢ and y, which were empirically adjusted to reproduce the energy difference between
extended and constrained alpha helical energies for the alanine tetrapeptide. This led to a significant improvement
between molecular mechanical and quantum mechanical relative energies for the remaining members of the set of
tetrapeptides studied by Beachy ef al. Users should be aware that parm96.dat has not been as extensively used
as parm94.dat, and that it almost certainly has its own biases and idiosyncrasies, including strong bias favoring
extended f conformations.[22, 152, 153]

The 198 force field [154] differs from parm94.dat in torsion angle parameters involving the glycosidic torsion
in nucleic acids. These serve to improve the predicted helical repeat and sugar pucker profiles.

3.12.3. The Wang et al. (1999) force field

parm99.dat Basic force field parameters
all_amino94.in topologies and charges for amino acids
all_amino94nt.in same, for N-terminal amino acids

all amino94ct.in same, for C-terminal amino acids

all nuc94.in topologies and charges for nucleic acids
gaff.dat Force field for general organic molecules
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all_modrna08.1lib topologies for modified nucleosides
all modrna0O8.frcmod parameters for modified nucleosides

The ff99 force field [155] points toward a common force field for proteins for “general” organic and bio-organic
systems. The atom types are mostly those of Cornell ef al. (see below), but changes have been made in many
torsional parameters. The topology and coordinate files for the small molecule test cases used in the development
of this force field are in the parm99_lib subdirectory. The ff99 force field uses these parameters, along with the
topologies and charges from the Cornell et al. force field, to create an all-atom nonpolarizable force field for
proteins and nucleic acids.

There are more than 99 naturally occurring modifications in RNA. Amber force field parameters for all these
modifications have been developed to be consistent with ff94 and ff99.[54] The modular nature of RNA was taken
into consideration in computing the atom-centered partial charges for these modified nucleosides, based on the
charging model for the “normal” nucleotides.[156] All the ab initio calculations were done at the Hartree-Fock
level of theory with 6-31G(d) basis sets, using the GAUSSIAN suite of programs. The computed electrostatic
potential (ESP) was fit using RESP charge fitting in antechamber. Three-letter codes for all of the fitted nucleosides
were developed to standardize the naming of the modified nucleosides in PDB files. For a detailed description of
charge fitting for these nucleosides and an outline for the three letter codes, please refer to Ref. [54].

The AMBER force field parameters for 99 modified nucleosides are distributed in the form of library files. The
all_modrna08.1ib file contains coordinates, connectivity, and charges, and all_modrna08.frcmod contains infor-
mation about bond lengths, angles, dihedrals and others. The AMBER force field parameters for the 99 modified
nucleosides in RNA are also maintained at the modified RNA database at http://ozone3.chem.wayne.edu.

3.12.4. The 2002 polarizable force fields

fremod. ££02pol.rl Recommended initialization file

parm99.dat Force field, for amino acids and some organic molecules;
can be used with either additive or
non-additive treatment of electrostatics.

parm99EP .dat Like parm99.dat, but with "extra-points": off-center
atomic charges, somewhat like lone-pairs.

frcmod. ££02pol.rl Updated torsion parameters for £ff£02.

all nuc02.in Nucleic acid input for building database, for a non-
additive (polarizable) force field without extra points.

all _amino02.in Amino acid input ...

all aminoct02.in COO- amino acid input ...

all aminont02.in NH3+ amino acid input ....

all nucO2EP.in Nucleic acid input for building database, for a non-

additive (polarizable) force field with extra points.
all aminoO2EP.in Amino acid input ...
all _aminoctO02EP.in COO- amino acid input ...

all_aminont02EP.in NH3+ amino acid input ....

The ff02 force field is a polarizable variant of ff99. (See Ref. [157] for a recent overview of polarizable force
fields.) Here, the charges were determined at the B3LYP/cc-pVTZ//HF/6-31G* level, and hence are more like “gas-
phase” charges. During charge fitting the correction for intramolecular self polarization has been included.[100]
Bond polarization arising from interactions with a condensed phase environment are achieved through polarizable
dipoles attached to the atoms. These are determined from isotropic atomic polarizabilities assigned to each atom,
taken from experimental work of Applequist. The dipoles can either be determined at each step through an iterative
scheme, or can be treated as additional dynamical variables, and propagated through dynamics along with the
atomic positions, in a manner analogous to Car-Parinello dynamics. Derivation of the polarizable force field
required only minor changes in dihedral terms and a few modification of the van der Waals parameters.

Subsequently, a set up updated torsion parameters has been developed for the ff02 polarizable force field.[158]
These are available in the fremod. [f02pol.rl file.

The user also has a choice to use the polarizable force field with extra points on which additional point charges
are located; this is called ff02EP. The additional points are located on electron donating atoms (e.g. O,N,S), which
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mimic the presence of electron lone pairs.[159] For nucleic acids we chose to use extra interacting points only on
nucleic acid bases and not on sugars or phosphate groups.

There is not (yet) a full published description of this, but a good deal of preliminary work on small molecules
is available.[100, 160] Beyond small molecules, our initial tests have focused on small proteins and double helical
oligonucleotides, in additive TIP3P water solution. Such a simulation model, (using a polarizable solute in a non-
polarizable solvent) gains some of the advantages of polarization at only a small extra cost, compared to a standard
force field model. In particular, the polarizable force field appears better suited to reproduce intermolecular inter-
actions and directionality of H-bonding in biological systems than the additive force field. Initial tests show ffO2EP
behaves slightly better than ff02, but it is not yet clear how significant or widespread these differences will be.

3.12.5. Older ion parameters

In the past, for alkali ions with TIP3P waters, Amber has provided the values of Aqvist,[161] adjusted for
Amber’s nonbonded atom pair combining rules to give the same ion-OW potentials as in the original (which were
designed for SPC water); these values reproduce the first peak of the radial distribution for ion-OW and the relative
free energies of solvation in water of the various ions. Note that these values would have to be changed if a
water model other than TIP3P were to be used. Rather arbitrarily, Amber also included chloride parameters from
Dang.[162] These are now known not to work all that well with the Aqvist cation parameters, particularly for the
K/Cl pair. Specifically, at concentrations above 200 mM, KCI will spontaneously crystallize; this is also seen with
NaCl at concentrations above 1 M.[163] These “older” parameters are now collected in frcmod.ionsff99_tip3p, but
are not recommended except to reproduce older simulations.
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Implicit solvent methods can speed up atomistic simulations by approximating the discrete solvent as a contin-
uum, thus drastically reducing the number of particles in the system. An additional effective speedup often comes
from much faster sampling of the conformational space afforded by these methods.[164—168] The generalized
Born (GB) solvation model is the most commonly used implicit solvent model for atomistic MD simulation; it has
been most widely tested on ff99SB and ff14SBonlysc, but in principle could be used with other non-polarizable
force fields, such as ff03. A recent (2019) review gives a good overview.[169] To estimate the total solvation
free energy of a molecule, AGy,;,, one typically assumes that it can be decomposed into the "electrostatic" and
"non-electrostatic" parts:

AGSOIV = AGel + AGnonel (41)

where AG,,,,; is the free energy of solvating a molecule from which all charges have been removed (i.e. partial
charges of every atom are set to zero), and AG,; is the free energy of first removing all charges in the vacuum,
and then adding them back in the presence of a continuum solvent environment. Generally speaking, AG,oer
comes from the combined effect of two types of interaction: the favorable van der Waals attraction between the
solute and solvent molecules, and the unfavorable cost of breaking the structure of the solvent (water) around the
solute. In the current Amber codes, this is taken to be proportional to the total solvent accessible surface area (SA)
of the molecule, with a proportionality constant derived from experimental solvation energies of small non-polar
molecules, and uses a fast LCPO algorithm [170] to compute an analytical approximation to the solvent accessible
area of the molecule.

The Poisson-Boltzmann approach described in the next section has traditionally been used in calculating AG,;.
However, in molecular dynamics applications, the associated computational costs are often very high, as the
Poisson-Boltzmann equation needs to be solved every time the conformation of the molecule changes. Amber
developers have pursued an alternative approach, the analytic generalized Born (GB) method, to obtain a rea-
sonable, computationally efficient estimate to be used in molecular dynamics simulations. The methodology has
become popular,[171-178] especially in molecular dynamics applications,[179-182] due to its relative simplicity
and computational efficiency, compared to the more standard numerical solution of the Poisson-Boltzmann equa-
tion. Within Amber GB models, each atom in a molecule is represented as a sphere of radius R; with a charge g;
at its center; the interior of the atom is assumed to be filled uniformly with a material of dielectric constant 1. The
molecule is surrounded by a solvent of a high dielectric € (80 for water at 300 K). The GB model approximates
AG,; by an analytical formula,[171, 183]

1 qiq; (1 _exp[—KfGs] > @2)

AGy ~ —=

¢ zizj’fGB(VipRiaRj) €

where 7;; is the distance between atoms i and j, the R; are the so-called effective Born radii, and Sfes() is a certain
smooth function of its arguments. The electrostatic screening effects of (monovalent) salt are incorporated [183]
via the Debye-Huckel screening parameter k.

A common choice [171] of fgp is

1/2

fep= [rlzj +RiR; eXP(_’izj/4Rin)] 49

although other expressions have been tried.[174, 184] The effective Born radius of an atom reflects the degree of its
burial inside the molecule: for an isolated ion, it is equal to its van der Waals (VDW) radius p;. Then one obtains
the particularly simple form:
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2
AG, = —di (1 - 1) 4.4)

where we assumed x = O (pure water). This is the famous expression due to Born for the solvation energy of
a single ion. The function fgp() is designed to interpolate, in a clever manner, between the limit ri; — 0, when
atomic spheres merge into one, and the opposite extreme r;; — oo, when the ions can be treated as point charges
obeying the Coulomb’s law.[177] For deeply buried atoms, the effective radii are large, R; > p;, and for such atoms
one can use a rough estimate R; ~ L;, where L; is the distance from the atom to the molecular surface. Closer to
the surface, the effective radii become smaller, and for a completely solvent exposed side-chain one can expect R;
to approach p;.

The effective radii depend on the molecule’s conformation, and so have to be re-computed every time the confor-
mation changes. This makes the computational efficiency a critical issue, and various approximations are normally
made that facilitate an effective estimate of R;. With the exception of GBNSRG6 (see Section 5.1), the so-called
Coulomb field approximation, or CFA, is used for Amber GB models, which replaces the true electric displacement
around the atom by the Coulomb field. Within this assumption, the following expression can be derived:[177]

1
R =p = [6(rl = p)r iy 4.5)

where the integral is over the solute volume surrounding atom i. For a realistic molecule, the solute boundary
(molecular surface) is anything but trivial, and so further approximations are made to obtain a closed-form ana-
Iytical expression for the above equation, e.g. the so-called pairwise de-screening approach of Hawkins, Cramer
and Truhlar,[185] which leads to a GB model implemented in Amber with ighb=1. The 3D integral used in the
estimation of the effective radii is performed over the van der Waals (VDW) spheres of solute atoms, which im-
plies a definition of the solute volume in terms of a set of spheres, rather than the complex molecular surface,[186]
commonly used in the PB calculations. For macromolecules, this approach tends to underestimate the effective
radii for buried atoms,[177] arguably because the standard integration procedure treats the small vacuum—filled
crevices between the van der Waals (VDW) spheres of protein atoms as being filled with water, even for struc-
tures with large interior.[184] This error is expected to be greatest for deeply buried atoms characterized by large
effective radii, while for the surface atoms it is largely canceled by the opposing error arising from the Coulomb
approximation, which tends [172, 176, 187] to overestimate R;.

The deficiency of the model described above can, to some extent, be corrected by noticing that even the opti-
mal packing of hard spheres, which is a reasonable assumption for biomolecules, still occupies only about three
quarters of the space, and so "scaling-up" of the integral by a factor of four thirds should effectively increase the
underestimated radii by about the right amount, without any loss of computational efficiency. This idea was devel-
oped and applied in the context of pH titration,[177] where it was shown to improve the performance of the GB
approximation in calculating pKa values of protein sidechains. However, the one-parameter correction introduced
in Ref. [177] was not optimal in keeping the model’s established performance on small molecules. It was therefore
proposed [182] to re-scale the effective radii with the re-scaling parameters being proportional to the degree of the
atom’s burial, as quantified by the value I; of the 3D integral. The latter is large for the deeply buried atoms and
small for exposed ones. Consequently, one seeks a well-behaved re-scaling function, such that R; = ( pf] —I)™!
for small /;, and R; > (pf] —I;)~! when I; becomes large. The following simple, infinitely differentiable re-scaling
function was chosen to replace the model’s original expression for the effective radii:

R7'=p; " —p; ! tanh(aW — BW* + y¥7) (4.6)
where ¥ = [;p;, and o, 3, y are treated as adjustable dimensionless parameters which were optimized using the
guidelines mentioned earlier (primarily agreement with the PB). Currently, Amber supports two GB models (
termed OBC ) based on this idea. These differ by the values of o, 8, ¥, and are invoked by setting igb to either
igb=2 or igb=5. The details of the optimization procedure and the performance of the OBC model relative to the
PB treatment and in MD simulations on proteins is described in Ref. [182]; an independent comparison to the PB
in calculating the electrostatic part of solvation free energy on a large data set of proteins can be found in Ref.
[188].

Our experience with generalized Born simulations is mainly with ff99SB, ff14SBonlysc or ff03; the current GB
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.t [ 2 [ 5 [ 7 [ 8 |
’ mbondi ‘ mbondi2 ‘ mbondi2 ‘ bondi ‘ mbondi3 ‘

Table 4.1.: Recommended radii sets for various GB models. For values of igh given in the top row, the string in the
second row should be entered in LEaP as “set default PBRadii xxx”.

models are not compatible with polarizable force fields. Replacing explicit water with a GB model is equivalent to
specifying a different force field, and users should be aware that none of the GB options (in Amber or elsewhere)
is as mature as simulations with explicit solvent; user discretion is advised. For example, it was shown that
salt bridges are too strong in some of these models [189, 190] and some of them provide secondary structure
distributions that differ significantly from those obtained using the same protein parameters in explicit solvent,
with GB having too much o-helix present.[191, 192] The combination of the ffI/4SBonlysc force field with igb=8
gives the best results for proteins [25][193], nucleic acids and protein-nucleic acid complexes. [194]

Despite these limitations, implicit treatment of solvent is widely used in molecular simulations for two main
reasons: algorithmic/computational speed and conformational sampling. [168, 195] Implicit solvent methods can
be algorithmically/computationally faster, as measured by simulation time steps per processor (CPU) time, because
the vast number of individual interactions between the atoms of individual solvent molecules do not need to be
explicitly computed. Implicit-solvent simulations can also sample conformational space faster in the low viscosity
regime afforded by the implicit solvent model.[164—168] To some extent, the interest in implicit-solvent-based
simulations is motivated by the need to sample very large conformational spaces for problems such as protein
folding, binding-affinity calculations, or large-scale fluctuations of nucleosomal DNA fragments. The speedup of
conformational change can vary considerably, depending on the details of the transition, and can range from no
speedup at all to almost a 100-fold speedup. [168] In general, the larger the conformational change, the higher the
speedup one may expect, but this tendency is not universal or uniform. These speedup values are also expected to
vary by the specific flavour of GB model used, a detailed analysis for igb5 can be found in Ref. [168].

The generalized Born models used here are based on the "pairwise" model introduced by Hawkins, Cramer and
Truhlar,[185, 196] which in turn is based on earlier ideas by Still and others.[171, 176, 187, 197] The so-called
overlap parameters for most models are taken from the Tinker molecular modeling package (http://tinker.wustl.edu).
The effects of added monovalent salt are included at a level that approximates the solutions of the linearized
Poisson-Boltzmann equation.[183] The original implementation was by David Case, who thanks Charlie Brooks
for inspiration. Details of our implementation of generalized Born models can be found in Refs. [198, 199].

4.1. GB/SA input parameters

As outlined above, there are several "flavors" of GB available, depending upon the value of igh. The version
that has been most extensively tested corresponds to igh=1; the "OBC" models (igh=2 and 5) are newer, but ap-
pear to give significant improvements and are recommended for most projects (certainly for peptides or proteins).
The newest, most advanced, and least extensively tested model, GBn (igh=7), yields results in considerably better
agreement with molecular surface Poisson-Boltzmann and explicit solvent results than the "OBC" models under
many circumstances.[192] The GBn model was parameterized for peptide and protein systems and is not rec-
ommended for use with nucleic acids. A modification on the GBn model (igh=8) further improves agreement
between Poisson-Boltzmann and explicit solvent data compared to the original formulation (igh=7).[25] Users
should understand that all (current) GB models have limitations and should proceed with caution. Generalized
Born simulations can only be run for non-periodic systems, i.e. where ntb=0. Unlike its use in explicit solvent
PME simulations, short nonbonded cutoff values have much stronger impact on accuracy of the GB calculations.
Essentially, any cutoff values other than cut > structure size can lead to artifacts. Current GPU implementation of
the GB can not use cutoffs. An alternative that retains most of the speed of the GB with a cutoff, but without most
of its artifacts, is GB-HCP described in Section 39.5. If the nonbonded cutoff is used in GB calculations, it should
be greater than that for PME calculations, perhaps cut=16. The slowly-varying forces generally do not have to be
evaluated at every step for GB, either nrespa=2 or 4, although that option may lead to some artifacts as well.

igb =0 No generalized Born term is used. (Default)
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=1 The Hawkins, Cramer, Truhlar[185, 196] pairwise generalized Born model is used, with param-

eters described by Tsui and Case.[198] This model uses the default radii set up by LEaP. It is
slightly different from the GB model that was included in Amber6. If you want to compare to
Amber 6, or need to continue an ongoing simulation, you should use the command "set default
PBradii amber6" in LEaP, and set igh=1 in sander. For reference, the Amber6 values are those
used by an earlier Tsui and Case paper.[180] Note that most nucleic acid simulations have used
this model, so you take care when using other values. Also note that Tsui and Case used an
offset (see below) of 0.13 A, which is different from its default value.

=2 Use a modified GB model developed by A. Onufriev, D. Bashford and D.A. Case; the main

idea was published earlier,[177] but the actual implementation here[182] is an elaboration of
this initial idea. Within this model, the effective Born radii are re-scaled to account for the
interstitial spaces between atom spheres missed by the GBCT approximation. In that sense,
GBYBC is intended to be a closer approximation to true molecular volume, albeit in an average
sense. With igh=2, the inverse of the effective Born radius is given

by:cedure
R;I = ﬁfl —tanh (Ot‘I’ —B¥?+ }"P3) /pi

where p; = p; —offset, and ¥ = Ip;, with I given in our earlier paper. The parameters c,
B, and y were determined by empirical fits, and have the values 0.8, 0.0, and 2.909125. This
corresponds to model I in Ref [182]. With this option, you should use the LEaP command "set
default PBradii mbondi2" to prepare the prmtop file.

=3 or 4 These values are unused; they were used in Amber 7 for parameter sets that are no longer

supported.

=5 Same as igh=2, except that now «, 3,7 are 1.0, 0.8, and 4.85. This corresponds to model II

in Ref [182]. With this option, you should use the command "set default PBradii mbondi2"
in setting up the prmtop file, although "set default PBradii bondi" is also OK. When tested in
MD simulations of several proteins,[182] both of the above parameterizations of the "OBC"
model showed equal performance, although further tests [188] on an extensive set of protein
structures revealed that the igh=35 variant agrees better with the Poisson-Boltzmann treatment
in calculating the electrostatic part of the solvation free energy.

=6 With this option, there is no continuum solvent model used at all; this corresponds to a non-

periodic, "vacuum", model where the non-bonded interactions are just Lennard-Jones and
Coulomb interactions.

=7 The GBn model described by Mongan, Simmerling, McCammon, Case and Onufriev[200] is

employed. This model uses a pairwise correction term to GB?CT to approximate a molecular
surface dielectric boundary; that is to eliminate interstitial regions of high dielectric smaller
than a solvent molecule. This correction affects all atoms and is geometry-specific, going be-
yond the geometry-free, "average" re-scaling approach of GB?2C, which mostly affects buried
atoms. With this method, you should use the bondi radii set. The overlap or screening pa-
rameters in the prmtop file are ignored, and the model-specific GBn optimized values are sub-
stituted. The model carries little additional computational overhead relative to the other GB
models described above.[200] This method is not recommended fcedureor systems involving
nucleic acids.

=8 Same GB functional form as the GBn model (igb=7), but with different parameters. The offset,

overlap screening parameters, and gbneckscale are changed. In addition, individual o, B, and
vy parameters can be specified for each of the elements H, C, N, O, S, P. Parameters for other
elements have not been optimized, and the default values used are the ones from igb=5, which
were not element-dependent. Default values were optimized for H, C, N, O and S atoms in
protein systems.[25] Although the parameters for P in proteins can be specified, the default
values were not optimized and are the igb=5 values. Nucleic acids have separate parameters
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from those used for proteins, and default values were optimized for H, C, N, O and P atoms in
nucleic acid systems.[194]

The following are the default parameters sander uses with igh=8:

Sh=1.425952, Sc=1.058554, Sn=0.733599,

So=1.061039, Ss=-0.703469, Sp=0.5,

offset=0.195141, gbneckscale=0.826836,

gbalphaH=0.788440, gbbetaH=0.798699, gbgammaH=0.437334,
gbalphaC=0.733756, gbbetaC=0.506378, gbgammaC=0.205844,
gbalphaN=0.503364, gbbetaN=0.316828, gbgammaN=0.192915,
gbalpha0S=0.867814, gbbeta0S=0.876635, gbgammaOS=0.387882,
gbalphaP=1.0, gbbetaP=0.8, gbgammaP=4.85

screen_hnu=1.69654, screen_cnu=1.26890,

screen_nnu=1.425974, screen_onu=0.18401, screen_pnu=1.54506,
gb_alpha_hnu=0.53705, gb_beta_ hnu=0.36286, gb_gamma hnu=0.11670,
gb_alpha _cnu=0.33167, gb_beta cnu=0.19684, gb_gamma_cnu=0.09342,
gb_alpha_nnu=0.68631, gb_beta nnu=0.46319, gb_gamma nnu=0.13872,
gb_alpha_onu=0.60634, gb_beta_ onu=0.46301, gb_gamma_ onu=0.14226,
gb_alpha_pnu=0.41836, gb_beta pnu=0.29005, gb_gamma pnu=0.10642

Parameters for proteins and for nucleic acids were optimized separately and can be indepen-
dently specified. Protein parameters: Sh, Sc, Sn, So, Ss and Sp are scaling parameters, gbal-
phaX, gbbetaX, gbgammaX are the o, 3, v set for element X. gbalphaOS, gbbetaOS, gbgam-
maOSs is the o, B, vy set applied to both O and S. The phosphorus parameters (in proteins)
were not optimized and are simply taken as the parameters used in the OBC-2 model (igb=5).
Nucleic acid parameters (end with "nu"): screen_Xnu (X=h, c, n, o, p) are scaling parameters,
gb_alpha_Xnu (X=h, c, n, o, p) are the o, 3, v set for element X.

Since parameters are assigned for each atom based on its residue name (hard-coded in "sander/egb.F90"
(subroutine isnucat)), users need to update the residue table in the sander source code if nucleic
acids with different names are simulated using this GB model.

The default values for offset=0.195141, gbneckscale=0.826836 are recommended for both pro-
teins and nucleic acids.

mbondi3 radii are recommended with ighb=8 and can be employed with the LEaP command
"set default PBradii mbondi3". The mbondi3 radii were adjusted based on protein simulations,
and optimization of these radii for nucleic acids is currently underway.

=10 Calculate the reaction field and nonbonded interactions using a numerical Poisson-Boltzmann
solver. This option is described in the Chapter 6. Note that this is not a generalized Born
simulation, in spite of its use of igb; it is rather an alternative continuum solvent model.

intdiel Sets the interior dielectric constant of the molecule of interest. Default is 1.0. Other values have not
been extensively tested.

extdiel Sets the exterior or solvent dielectric constant. Default is 78.5.

saltcon Sets the concentration (M) of 1-1 mobile counterions in solution, using a modified generalized Born
theory based on the Debye-Hiickel limiting law for ion screening of interactions.[183] Default is 0.0
M (i.e. no Debye-Hiickel screening.) Setting saltcon to a nonzero value does result in some increase
in computation time.

rgbmax This parameter controls the maximum distance between atom pairs that will be considered in car-
rying out the pairwise summation involved in calculating the effective Born radii. Atoms whose
associated spheres are farther way than rgbmax from given atom will not contribute to that atom’s
effective Born radius. This is implemented in a "smooth" fashion (thanks mainly to W.A. Svrcek-
Seiler), so that when part of an atom’s atomic sphere lies inside rgbmax cutoff, that part contributes
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to the low-dielectric region that determines the effective Born radius. The default is 25 A, which is
usually plenty for single-domain proteins of a few hundred residues. Even smaller values (of 10-15
A) are reasonable, changing the functional form of the generalized Born theory a little bit, in ex-
change for a considerable speed-up in efficiency, and without introducing the usual cut-off artifacts
such as drifts in the total energy.

The rgbmax parameter affects only the effective Born radii (and the derivatives of these values with
respect to atomic coordinates). The cut parameter, on the other hand, determines the maximum
distance for the electrostatic, van der Waals and "off-diagonal" terms of the generalized Born inter-
action. The value of rgbmax might be either greater or smaller than that of cut: these two parameters
are independent of each other. However, values of cut that are too small are more likely to lead to
artifacts than are small values of rgbmax; therefore one typically sets rgbmax <= cut.

rbornstat If rbornstat = 1, the statistics of the effective Born radii for each atom of the molecule throughout
the molecular dynamics simulation are reported in the output file. Default is 0.

offset The dielectric radii for generalized Born calculations are decreased by a uniform value "offset" to
give the "intrinsic radii" used to obtain effective Born radii. Default is 0.09 A.

gbsa Option to carry out GB/SA (generalized Born/surface area) simulations. For the default value of 0,
surface area will not be computed and will not be included in the solvation term. If gbsa = I, surface
area will be computed using the LCPO model.[170] If gbsa = 2, surface area will be computed by
recursively approximating a sphere around an atom, starting from an icosahedra. Note that no forces
are generated in this case, hence, ghsa = 2 only works for a single point energy calculation and is
mainly intended for energy decomposition in the realm of MM-GBSA. If gbsa = 3, surface area will
be computed using a fast pairwise approximation [201] suitable for GPU computing in pmemd.cuda
program; the acceleration in pmemd.cuda compared with gbsa = 2 is ~30 times faster [201]. Note
that gbsa = 3 is currently not supported in sander, MM-GBSA, QM/MM or libsff. Although gbsa =
3 is supported in pmemd, the general usage is not recommended as the speed gain is trivial, given that
the algorithm was particularly designed for fast approximation of surface area in GPU-accelerated
GB simulations. Therefore, we recommend users to use gbsa=3 with pmemd.cuda.

surften Surface tension used to calculate the nonpolar contribution to the free energy of solvation (when
gbsa = 1), as Enp = surften*SA. The default is 0.005 kcal/mol/A%.[202] For gbsa = 3, suften works
comparably with gbsa = I given the same value. [201]

rdt This parameter is only used for GB simulations with LES (Locally Enhanced Sampling). In GB+LES
simulations, non-LES atoms require multiple effective Born radii due to alternate descreening effects
of different LES copies. When the multiple radii for a non-LES atom differ by less than RDT, only
a single radius will be used for that atom. See Chapter 29 for more details. Default is 0.0 A.

4.2. ALPB (Analytical Linearized Poisson-Boltzmann)

Like the GB model, the ALPB approximation [203, 204] can be used to replace the need for explicit solvent,
with similar benefits (such as enhanced conformational sampling) and caveats. The basic ALPB equation that
approximates the electrostatic part of the solvation free energy is

1/1 1 1 1 aff
AGy =~ AGypp=—|——— | ———= iqi| —+— 4.7

el al pb ) <8in 8ex> 1+ap %:%CIJ (fGB A > 4.7
where 8 = €,/ €. is the ratio of the internal and external dielectrics, @=0.571412, and A is the so-called effective
electrostatic size of the molecule, see the definition of Arad below. Here fgp is the same smooth function as in the
GB model. The GB approximation is then just the special case of the ALPB when the solvent dielectric is infinite;

however, for finite values of solvent dielectric the ALPB tends to be more accurate. For aqueous solvation, the
accuracy advantage offered by the ALPB is still noticeable, and becomes more pronounced for less polar solvents.
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Statistically significant tests on macromolecular structures [204] have shown that ALPB is more likely to be a
better approximation to PB than the GB. At the same time, the ALPB has virtually no additional computational
overhead relative to GB. However, users should realize that at this point the new model has not yet been tested
nearly as extensively as the canonocal GB model. The ALPB can potentially replace the GB in the energy analysis
of snapshots via the MM-GB/SA scheme. The electrostatic screening effects of monovalent salt are currently
introduced into the ALPB in the same manner as in the GB, and are determined by the parameter saltcon .

alpb Flag for using ALPB to handle electrostatic interactions within the implicit solvent model.

=0 No ALPB (default).

=1 ALPB is turned on. Requires that one of the analytical GB models is also used to compute the
effective Born radii, that is one must set igh=1,2,5, or 7. The ALPB uses the same sets of radii
as required by the particular GB model.

arad Effective electrostatic size (radius) of the molecule. Characterizes its over-all dimensions and global
shape, and is not to be confused with the effective Born radius of an atom. An appropriate value
of Arad must be set if alpb=1: this can be conveniently estimated for your input structure with
the utility elsize that comes with the main distribution. The default is 15 A. While Arad may change
during the course of a simulation, these changes are usually not very large; the accuracy of the ALPB
is found to be rather insensitive to these variations. In the current version of Amber Arad is treated
as constant throughout the simulation, the validity of this assumption is discussed in Ref. [204].
Currently, the effective electrostatic size is only defined for "single-connected" molecules. However,
the ALPB model can still be used to treat the important case of complex formation. In the docked
state, the compound is considered as one, with its electrostatic size well defined. When the ligand
and receptor become infinitely separated, each can be assigned its own value of Arad.

4.2.1. elsize
NAME

elsize - Given the structure, estimates its effective electrostatic size
(parameter Arad ) need by the ALPB model.

SYNOPSIS

Usage: elsize input-pgr-file [-options]

—det an estimate based on structural invariants. DEFAULT.
—ell an estimate via elliptic integral (numerical).

—-elf same as above, but via elementary functions.

—abc prints semi-axes of the effective ellipsoid.

—tab prints all of the above into a table without header.
—-hea prints same table as -tab but with a header.

—deb prints same as -tab with some debugging information.

—-xyz uses a file containing only XYZ coordinates.
DESCRIPTION

elsize is a program originally written by G. Sigalov to estimate the effective electrostatic size of a structure via a
quick, analytical method. The algorithm is presented in detail in Ref. .[204] You will need your structure in a pqr
format as input, which can be easily obtained from the prmtop and inpcrd files using ambpdb utility described
above:

ambpdb -p prmtop -pgr -c inpcrd > input-file-pqgr

After that you can simply do: elsize input-file-pqr , the value of electrostatic size in Angstroms will be output on
stdout. The source code is in the src/etc/ directory, its comments contain more extensive description of the options
and give an outline of the algorithm. A somewhat less accurate estimate uses just the XYZ coordinates of the
molecule and assumes the default radius size of for all atoms:
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elsize input-file-xyz

This option is not recommended for very small compounds. The code should not be used on structures made up
of two or more completely disjoint" compounds — while the code will still produce a finite value of Arad , it is not
very meaningful. Instead, one should obtain estimates for each compound separately.
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GBNSRG6 is an implementation of the Generalized Born (GB) model in which the effective Born radii are com-
puted numerically, via the so-called “R6” integration[205, 206] over molecular surface of the solute:

1 r—r; 173
-1 _ [ _ i
Ry = ( = .%av r—r; 6 dS) 5.1

For most structures, GB solvation based on the numerical R6 radii are virtually as accurate[200] as the GB energies
based on the “gold standard” perfect effective radii, which can in principle be obtained from numerical solution
of the PB equation[184]. As a result, the numerical R6 formulation is generally more accurate than the fast
analytical approaches described above. In contrast to most GB practical models, GBNSR6 model is parameter-
free in the same sense as the numerical PB framework is. Thus, accuracy of GBNSR®6 relative to the PB standard
is virtually unaffected by the choice of input atomic radii. However, unlike the analytical GB models in AMBER,
GBNSRG6 can not yet be used in dynamics. Recent benchmarks show that electrostatic binding energies computed
by GBNSRG6 are in good agreement with the numerical PB reference[207, 208].

Within GBNSRG6, any of the following three versions of the pairwise GB equation can be used for computation of
the solvation energies: (1) the canonical (Still 1990) GB[171], (2) the canonical GB with the ALPB correction[203,
204], and (3) the charge hydration asymmetric generalized Born (CHAGB) model[209]. The models are listed
below; the first two are described in more detail in the GB section of the main manual, a brief introduction into
CHAGSB is below. For more information about these models please refer to the original references.

5.1. GB equations available in gbnsr6

* Canonical GB: the original equation due to Still et al, Eqs.4.2, 4.3.

* ALPB: an inexpensive correction, Eq. 4.7, to Still’s equation that restores correct dependence on dielectric
constants. The correction is recommended in all cases except small molecules with decidedly non-spherical
topology (e.g., rings) or structures that are topologically not singly-connected, e.g., two molecules not in
contact with each other. The electrostatic size is computed automatically, no need to specify it in GBNSR6.

¢ CHAGB: The effect of charge hydration asymmetry (CHA)[103] — non-invariance of solvation free energy
upon solute charge inversion — is incorporated into the Generalized Born framework[209]. The CHA is
added to the GB equation (with or without the ALPB correction) to emulate asymmetric response to solvated
charge of the specified explicit water model, e.g. TIP3P; the asymmetric response, which can be very
strong, is ultimately determined by the charge distribution within the water model. Note that in contrast to
standard GB or PB, CHAGB employs a novel definition of the dielectric boundary that does not subsume
the CHA effects into the intrinsic atomic radii, therefore a special input radii set is used with this model.
This model has so far been tested on a diverse set of neutral small molecules, charged and uncharged amino
acid analogs and small proteins. Noticeable accuracy improvement over the uncorrected GB was reported
for individual solvation energies. The optimum radii set for CHAGB available in this implementation shows
better transferability between different classes of molecules. However, the model has not been tested in the
context of protein-ligand binding, which may require a different radii set for optimum performance.

5.2. Numerical implementation of the R6 integral

* The R6 integral for computing the effective Born radius, Eq. 5.1, is performed for each atom over grid-based
molecular surface of the solute. The molecular surface is based on the field-view method[210] also used in
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the PBSA tool. A uniform Cartesian grid is utilized to discretize a rectangular box containing the molecular
structure. By exploiting the conservation of “electric flux” through the surface, the resulting finite difference
grid surface elements traverse the same solid angle as the spherical surface elements obtained from the Lee
and Richards molecular surface. More details of this implementation can be found in Ref.[210].

5.3. Usage

Just like other GB models available in AMBER, GBNSR6 can be used for efficient estimates of solvation free
energy in situation where numerical PB estimates are too expensive. In addition to the value of the total solvation
free energy, AG,its pairwise decomposition AG;; can be obtained without significant additional computational
expense typically associated with such estimates within the PB formalism. Options to output components of the
non-polar solvation energy are available as well.

5.3.1. Input files

gbnsro6 has a similar usage as amber/sander:
gbnsr6 -i mdin -o mdout -p prmtop -c inpcrd

mdin input control data for the computations.

mdout output of the program in a user readable state info and diagnostics. “-o stdout” will send the output to the
terminal.

prmtop input molecular topology file.

inperd input initial coordinate file.

5.3.2. Basic input options

The input file is very similar to the Amber/sander format. There are two namelist &cntrl and &gb . The only
flag available in &cntrl is inp, the rest of the flags are in the namelist &gb. The following is a description of the
available flags:

B Specifies the value of uniform offset [200] to the (inverse) effective radii, the default value is 0.028
A~ which gives better agreement with the PB model, regardless of the structure size. For best
agreement with the explicit solvent (TIP3P) solvation energies, optimal value of B depends on the
structure size: for small molecules (number of atoms less than 50), we recommend B=0. With -chagb
option, B is calculated automatically based on the solute size.

alpb Specifies if ALBP correction is to be used.

= 0 Canonical GB is used.
1 ALPB is used (default)

epsin Sets the dielectric constant of the solute region, default is 1.0. The solute region is defined to be the
solvent excluded volume.

epsout Sets the implicit solvent dielectric constant for the solvent, the default value is 78.5.

istrng Sets the ionic strength (in mM) for the GB equation. Default is 0 mM. Physiological monovalent
salt would correspond to 145 mM. Note the unit is different from that (in M) used by the other
generalized Born methods implemented in Amber.

Rs Sets the value of the dielectric boundary shift compared to the molecular surface, default value is
0.52A (only relevant for the -chagb option).

dprob Sets the radius of the solvent robe, default is 1.4 A.
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space

arcres

rbornstat

dgij

radiopt

chagb

ROH

tau

inp

5.3. Usage

Sets the grid spacing that determines the resolution of the solute molecular surface, default is 0.5 A.
Note that memory footprint of this grid-based implementation of GBNSR6 may become large for
large structures, e.g. the nucleosome (about 25,000 atoms) will take close to 2 GB of RAM when
the default grid spacing is used. For very large structures, one may consider increasing the value of
space, which will reduce the memory footprint and execution time; however, the accuracy will also
decrease.

Sets the arc resolution used for numerical integration over molecular surface, the default value is 0.2
A

= 0 values of the inverse effective Born radii are not printed (default).

1 print the inverse effective Born radii to the outfile.

This flag is used for printing pairwise electrostatic energies. The values will be found in the output
file, starting with the label “DGij”. The second and third columns of these lines especify the atom
indexes of the respective atomic pair. Energy units are kcal/mol.

0 does not print pairwise terms (default).

1 prints polar component only of the solvation energy between all pairs of atoms.

Specifies the set of intrinsic atomic radii to be used with the chagb option.

0 uses hardcoded intrisic radii optimized for small drug like molecules, and single amino acid
dipeptides[209] (default)

1 intrinsic radii are read from the topology file. Note that the dielectric surface defined using
these radii is then shifted outwards by Rs relative to the molecular surface. The option is not
recommended unless you are planning to re-optimize the input radii set for your problem.

0 Do not use CHAGB (default).
1 Use CHAGB.

Sets the value of Ry, for CHA GB model, the default is 0.586A. This parameter defines which
explicit water model is being mimicked with respect to its propensity to cause CHA, the default
corresponds to TIP3P and SPC/E. For OPC, RS, = 0.699A, for TIP4P RS, = 0.734A, and 0.183A
for TIP5P/E. A perfectly tetrahedral water , which can not cause charge hydration asymmetry, would
have R}, = 0.

Sets the value of 7 in the CHAGB model, the default is 1.47. This dimensionless parameter controls
the effective range of the neighboring charges (j) affecting the CHA of atom (i), see Ref.[209] for
details.

0 do not compute nonpolar solvation energy.

= 1 compute nonpolar solvation energies.

cavity_surften Sets the surface tension parameter for nonpolar solvation calculation, the default value is 0.005

More options

(kcal/mol/A?). This will be read only if the inp=1.

are available in a stand-alone version of GBNSR6 code not based on Cartesian grid [205].

5.3.3. Examples of input files

Compute electrostatic energy using default parameters.

&cntrl
inp=0
/
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Compute electrostatic energies including nonpolar solvation energies and print the inverse effective Born radii

&cntrl

np=1

/

&gb

epsin=1.0, epsout=78.5, istrng=0, dprob=1.4, space=0.5,
arcres=0.2, B=0.028, alpb=1l, rbornstat=1l, cavity_surften=0.005
/

Use chagb to compute solvation energy, include ALPB correction.

&cntrl

inp=1

/

&gb

alpb=1, chagb=1
/
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Several efficient finite-difference numerical solvers, both linear [211, 212] and nonlinear,[213] are implemented
in pbsa for various applications of the Poisson-Boltzmann method. The GPU support of those solvers is also
implemented in pbsa.cuda.[214, 215] In the following, a brief introduction is given to the method, numerical
solvers, and numerical energy and force calculations. This is followed by a detailed description of the usage
and keywords. Example input files are explained for typical pbsa applications. The GPU-enabled pbsa.cuda is
illustrated in section 6.6. For more information on the background and how to use the method, please consult the
cited references and online Amber tutorial pages.

6.1. Introduction

Solvation interactions, especially solvent-mediated dielectric screening and Debye-Hiickel screening, are es-
sential determinants of the structure and function of proteins and nucleic acids.[216] Ideally, one would like to
provide a detailed description of solvation through explicit simulation of a large number of solvent molecules and
ions. This approach is frequently used in molecular dynamics simulations of solution systems. In many appli-
cations, however, the solute is the focus of interest, and the detailed properties of the solvent are not of central
importance. In such cases, a simplified representation of solvation, based on an approximation of the mean-force
potential for the solvation interactions, can be employed to accelerate the computation.

The mean-force potential averages out the degrees of freedom of the solvent molecules, so that they are often
called implicit or continuum solvents. The formalism with which implicit solvents can be applied in molecular
mechanics simulations is based on a rigorous foundation in statistical mechanics, at least for additive molecular
mechanics force fields. Within the formalism, it is straightforward to understand how to decompose the total mean-
field solvation interaction into electrostatic and non-electrostatic components that scale quite differently and must
be modeled separately (see for example [217]).

The Poisson-Boltzmann (PB) solvents are a class of widely used implicit solvents to model solvent-mediated
electrostatic interactions.[216] They have been demonstrated to be reliable in reproducing the energetics and con-
formations as compared with explicit solvent simulations and experimental measurements for a wide range of
systems.[216] In these models, a solute is represented by an atomic-detail model as in a molecular mechanics force
field, while the solvent molecules and any dissolved electrolyte are treated as a structure-less continuum. The
continuum treatment represents the solute as a dielectric body whose shape is defined by atomic coordinates and
atomic cavity radii.[218] The solute contains a set of point charges at atomic centers that produce an electrostatic
field in the solute region and the solvent region. The electrostatic field in such a system, including the solvent
reaction field and the Coulombic field, may be computed by solving the PB equation:[219, 220]

V.[e(r)Vé(r)] = —4mp(r) —4mA(r) Zzici exp(—z¢(r)/kpT) (6.1)

where £(r) is the dielectric constant, ¢ (r) is the electrostatic potential, p(r) is the solute charge, A(r) is the Stern
layer masking function, z; is the charge of ion type i, c; is the bulk number density of ion type i far from the solute,
kp is the Boltzmann constant, and 7 is the temperature; the summation is over all different ion types. The salt
term in the PB equation can be linearized when the Boltzmann factor is close to zero. However, the approximation
apparently does not hold in highly charged systems. Thus, it is recommended that the full nonlinear PB equation
solvers be used in such systems.

The non-electrostatic or non-polar (NP) solvation interactions are typically modeled with a term proportional
to the solvent accessible surface area (SASA).[202] An alternative and more accurate method to model the non-
polar solvation interactions is also implemented in pbsa.[221] The new method separates the non-polar solvation
interactions into two terms: the attractive (dispersion) and repulsive (cavity) interactions. Doing so significantly
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improves the correlation between the cavity free energies and solvent accessible surface areas or molecular vol-
umes enclosed by SASA for branched and cyclic organic molecules.[222] This is in contrast to the commonly used
strategy that correlates total non-polar solvation energies with solvent accessible surface areas, which only corre-
lates well for linear aliphatic molecules.[202] In the alternative method, the attractive free energy is computed by
a numerical integration over the solvent accessible surface area that accounts for solvation attractive interactions
with no cutoff.[223]

6.1.1. Numerical solutions of the PB equation

In pbsa both the linear form and the full nonlinear form of the PB equation are supported. Many strategies
may be used to discretize the PB equation, but only the finite-difference (FD) method, or more rigorously, the
finite-volume method [224-226] is fully supported in pbsa for both the linear and nonlinear PB equations. A FD
method involves the following steps: mapping atomic charges to the FD grid points (termed grid charges below);
assigning non-periodic/periodic boundary conditions, i.e., electrostatic potentials on the boundary surfaces of the
FD grid; and applying a dielectric model to define the high-dielectric (i.e., water) and low-dielectric (i.e., solute
interior) regions and mapping it to the FD grid edges.

These steps allow the partial differential equation to be converted into a linear or nonlinear system with the
electrostatic potential on grid points as unknowns, the charge distribution on the grid points as the source, and
the dielectric constant on the grid edges (and the salt-related term for the linear case) wrapped into the coefficient
matrix, which is a seven-banded symmetric matrix. In pbsa, four common linear FD solvers are implemented:
modified ICCG, geometric multigrid, conjugate gradient, and successive over-relaxation (SOR).[212] In addition,
we have also implemented six nonlinear FD solvers: Inexact Newton(NT)/modified ICCG, NT/geometric multi-
grid, conjugate gradient, and SOR and its improved versions - adaptive SOR and damped SOR.[213]

In addition to the FD method, a new discretization strategy is also introduced to solve the linear PB equation.[227]
The Immersed Interface method (IIM) is a second-order accurate numerical method developed for systems with
interface, i.e. solute/solvent boundary in this case. In the IIM discretization scheme, the linear equations on regular
grid points, i.e. grid points away from the interface, are the same as the standard finite-difference method, but the
linear equations on irregular grid points, i.e. grid points nearby the interface, are constructed by minimizing the
magnitude of the local truncation error in the discretization of the PB equation.[228] It can be proven that the
errors of calculated potentials are at the order of O(h?) on the regular grid points and O(h) on the irregular grid
points.[228]

6.1.2. Numerical interpretation of energy and forces

PB solvents approximate the solvent-induced electrostatic mean-force potential by computing the reversible
work in the process of charging the atomic charges in a solute molecule or complex. The charging free energy is a
function of the electrostatic potential ¢, which can be computed by solving the linear or nonlinear system.

It has been shown (see for example [217]) that the total electrostatic energy of a solute molecule can be approx-
imated through the FD approach by subtracting the self FD Coulombic energy (G%P f) and the short-range FD

coul ,shel
Coulombic energy (GED, ) from the total FD electrostatic energy (G52, ). and adding back the analytical
short-range Coulombic energy (Gf(’)‘glﬂhm). The self FD Coulombic energy is due to interactions of grid charges
within one single atom. The self energy exists even when the atomic charge is exactly positioned on one grid point.
It also exists in the absence of solvent and any other charges. It apparently is a pure artifact of the FD approach
and must be removed. The short-range FD Coulombic energy is due to interactions between grid charges in two
different atoms that are separated by a short distance, usually less than 14 grid units. The short-range Coulombic
energy is inaccurate because the atomic charges are mapped onto their eight nearest FD grids, thus causing devia-
tion from the analytical Coulomb energy. The correction of Gf 021. shel f and GCF ODML shors1s made possible by the work
of Luty and McCammon’s analytical approach to compute FD Coulombic interactions.[229]

Therefore, the PB electrostatic interactions include both Coulombic interactions and reaction field interactions
for all atoms of the solute. The total electrostatic energy is given in the energy component EEL in the output file.
The term that is reserved for the reaction field energy, EPB, is zero if this method is used. If you want to know how
much of EEL is the reaction field energy, you can set the BCOPT keyword (to be explained below) to compute the

reaction field energy only by using a Coulombic field (or singularity) free formulation.[230]
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When the full nonlinear Poisson-Boltzmann equation is used, an additional energy term, the ionic energy, should
also be included. This energy term disappears in the symmetrical linear system because the effects due to opposite
ions cancel out. It is currently approximated by calculation up to the space boundary of the FD grid. It should
be noted that the NBUFFER keyword may need increasing to obtain good precision in the ionic energy for small
molecules with a large FILLRATIO.

An alternative method of computing the electrostatic interactions is also implemented in pbsa. In this method,
the reaction field energy is computed directly after the induced surface charges are first computed at the dielectric
boundary (i.e., the surface that separates solute and solvent). These surface charges are then used to compute the
reaction field energy,[216] and is given as the EPB term. It has been shown that doing so improves the convergence
of reaction field energy with respect to the FD grid spacing. However, a limitation of this method is that the
Coulombic energy has to be recomputed analytically with a pairwise summation procedure. When this method
is used, the EEL term only gives the Coulombic energy with a cutoff distance provided in the input file. The
two ways of computing electrostatic interactions are controlled by the keywords ENEOPT and FRCOPT to be
described below.

The non-polar solvation free energy is returned by the ECAVITY term, which is either the total non-polar
solvation free energy or the cavity solvation free energy in the two different models described above. The EDISPER
term returns the dispersion solvation free energy. Of course it is zero if the total non-polar solvation free energy
has been returned by ECAVITY. The word INP can be used to choose one of the two treatments of non-polar
solvation interactions.[221] Specifically, you can use SASA to correlate total non-polar solvation free energy, i.e.,
Gup = NP_TENSION x SASA+NP_OFFSET as in PARSE.[202] You can also use SASA to correlate the cavity
term only and use a surface-integration approach to compute the dispersion term.[221] i.e., Gup= Guisp+ Geaviry
with Gegyiry = CAVITY _TENSION x SASA+CAVITY _OFFSET. See the discussion of keywords in 8.2.8. These
options are described in detail in Ref. [221].

Finally, in this release, the PB forces are now correctly interpreted for the widely used SES molecular surface
definition, i.e., the partition of dielectric boundary pressure/force can now reproduce the virtual work principle.
This is achieved by proper decomposition of the dielectric boundary force on the reentrant portion of the molecular
surface. Specifically, the molecular surface is computed more accurately by considering the cases when the solvent
probe touches three atoms simultaneously. Next the reentrant force is also distributed onto the three atoms forming
the reentrant surface following the virtual work principle.[231]

6.1.3. Numerical accuracy and related issues

Note that the accuracy of any numerical PB procedure is determined by the discretization resolution specified
in the input, i.e., the grid spacing. The convergence criterion for the iteration procedures also plays some role for
the numerical PB solvers. Finally the accuracy is highly dependent upon the methods used for computing total
electrostatic interactions. In Lu and Luo,[217] the accuracy of the first method for total electrostatic interactions is
discussed in detail. In Ref.[231] the accuracy of the second method is discussed.

It is recommended that the second method for total electrostatic interactions be used for most calculations.
Apparently the cutoff distance for charge-charge interactions strongly influences the accuracy of electrostatic in-
teractions. The default setting is infinity, i.e., no cutoff is used. In this method, the convergence of the reaction
field energy with respect to the grid spacing is much better than that of the first method. Our experience shows
that the reaction field energies converge to within ~2% for tested proteins at the grid spacing of 0.5 A when the
weighted harmonic average of dielectric constants is used at the solute/solvent interface (when SMOOTHOPT =
1, see below).[232]

The reaction field energies computed with the second method (when SMOOTHOPT = 2) are also in excellent
agreement (differences in the order of 0.1%) with those computed with the Delphi program which uses the same
method for energy calculation. For example, see the computational set up documented in test case pbsa_delphi in
this release.[233]

The accuracy of non-polar solvation energy depends on the quality of SASA which is computed numerically by
representing each atomic surface by spherically distributed dots. Thus a higher dot density gives more accurate
atomic surface and molecular surface. However, it is found that the default setting for the dot density is quite
sufficient for typical applications.[221] Should you encounter any memory allocation error for surface calculation,
you are advised to use a coarser surface dot resolution if the physical memory of your computer is limited.
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Numerical solvation calculations are memory intensive for macromolecules due to the fine grid resolution re-
quired for sufficient accuracy. Thus, the efficiency of pbsa depends on how much memory is allocated for it and
the performance of the memory subsystem. The option that is directly related to its memory allocation is the FD
grid spacing for the PB equation and the surface dot resolution for molecular surface. Apparently the geometric
dimension and the number of atoms are also important for predicting the memory usage. In general for a typical
computer configuration with 8GB memory, the geometric dimension can be as large as 180 x 180 x 180 A3 at the
default grid spacing of 0.5 A before the computer responds too slowly.

6.2. Usage and keywords

6.2.1. File usage

pbsa has a very similar user interface as the Amber/sander program, though much simpler.
pbsa [-0] -i mdin -o mdout [-p prmtop -c inpcrd]/[-pgr pgr]

Starting from the 2014 release, pbsa supports the free format pqr file. Once the pqr reading is enabled, the default
Amber file reading and processing would be bypassed. Here is a brief description of the files mentioned above.

mdin input control data for the run.

mdout output user readable state info and diagnostics “-o stdout” will send output to stdout (to the terminal)
instead of to a file.

prmtop input molecular topology, force field, atom and residue names, and (optionally) periodic box type.
inperd input initial coordinates and (optionally) velocities and periodic box size.
pqr input initial coordinates, atomic charges and radii in the free format pqr.

Here are a few comments on the “free-formatted” pqr file used by pbsa. First all fields are delimited by spaces only.
Second there is no strict format requirement as in a standard pdb file. This more liberal style is to accommodate
par files of different origins. pbsa reads data on a per-line basis using the following format:

Tag AtomNumber AtomName ResidueName ChainID ResidueNumber XYZ Charge Radius

Tag A string specifying either ATOM or HETATM. Lines with other strings are ignored.
AtomNumber The sequence no of the atom, which is reset to start from 1.

AtomName The atom name.

ResidueName The residue name.

ChainID The chain ID of the atom, optional, which is ignored.

ResidueNumber The sequence no. of the residue, which is ignored.

XYZ The floating numbers representing the atomic coordiantes (in Angstrom).

Charge A float number providing the atomic charge (in electron).

Radius A float number providing the atomic radius (in Angstrom).
Finally it is worth to point out that it is apparently very hard to know whether the charge and radius fields are

swapped as in the Delphi generated pqr file. Here we have assumed that the data are in the plain P.Q.R. order.
Please make sure you are following the same convention in generating the pqr files.
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6.2.2. Basic input options

The layout of the input file is in the same way as that of Amber/sander for backward compatibility with previous
releases in Amber. The keywords are put in the the namelist of &cntrl for basic controls and &pb for more detailed
manipulation of the numerical procedures. This subsection discusses the basic keywords, either retained from
sander or newly created to invoke different energetic analyses. To reduce confusion most keywords from sander
have been removed from the namelist so they can no longer be read since the current implementation in pbsa only
performs single-structure calculations with the coordinates from inperd and exits. However, the current release is
compatible with the mdin file generated with the mmpbsa script in previous releases in Amber. Users interested in
energy minimization and molecular dynamics with the PB implementation are referred to sander in the release of
Amber. Nevertheless, for purposes of validation and development, the atomic forces can be dumped out in a file
when requested as described below.

The numerical electrostatic procedures can be turned on by setting IPB to either 1, 2 or 4. The flag IGB = 10 is
phased out in this release. The numerical non-polar procedures can be turned on by setting INP to either 1 or 2.
The backward compatible flag NPOPT is also phased out in this release.

imin Flag to run minimization. Both options give the same output energies though the output formats are
slightly different. This option is retained from previous releases in the Amber package for backward
compatibility. The current release of pbsa only supports single point energy calculation.

=0 No minimization. Dynamics is available with sander and NAB.

=1 Single point energy calculation. Default. Multiple-step PB minimization is also available with
sander and NAB.

ntx Option to read the coordinates from the “inpcrd” file. Only options 1 and 2 are supported in this
releases. Other options will cause pbsa to issue a warning though it does not affect the energy
calculation.

=1 Xis read formatted with no initial velocity information. Default.

=2 X s read unformatted with no initial velocity information.

ipb Option to set up a dielectric model for all numerical PB procedures. IPB = 1 corresponds to a
classical geometric method, while a level-set based algebraic method is used when IPB > 2. The
default IPB is 2.

=0 No electrostatic solvation free energy is computed.
=1 The dielectric interface between solvent and solute is built with a geometric approach.

=2 The dielectric interface is implemented with the level set function. Use of a level set function
simplifies the calculation of the intersection points of the molecular surface and grid edges and
leads to more stable numerical calculations. Default.

=4 The dielectric interface is also implemented with the level set function. However, the linear
equations on the grid points nearby the dielectric boundary are constructed using the IIM.
In this option, The dielectric constant do not need to be smoothed, that is, SMOOTHOPT is
useless. Only the linear PB equation is supported, that is, NPBOPT = 0. Starting in the Amber
2018 release, SOLVOPT is no longer relevant as only one stable solver is supported.

=6 The dielectric interface is implemented analytically with the revised density function approach
(SASOPT=2). The linear equations on the irregular points are constructed using the IIM and
fully utilizing the analytical surface. Otherwise, it is exactly the same as [PB=4.

=7 The dielectric interface is implemented analytically with the revised density function approach
(SASOPT=2). The linear equations on the irregular points are constructed using the X-factor
harmonic average method.

=8 The dielectric interface is implemented analytically with the revised density function approach
(SASOPT=2). The linear equations on the irregular points are constructed using the second-
order harmonic average method.
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inp

Option to select different methods to compute non-polar solvation free energy.

=0 No non-polar solvation free energy is computed.

=1 The total non-polar solvation free energy is modeled as a single term linearly proportional to the
solvent accessible surface area, as in the PARSE parameter set, that is, if INP = 1, USE_SAV
must be equal to 0. See Introduction.

=2 The total non-polar solvation free energy is modeled as two terms: the cavity term and the
dispersion term. The dispersion term is computed with a surface-based integration method
[221] closely related to the PCM solvent for quantum chemical programs.[223] Under this
framework, the cavity term is still computed as a term linearly proportional to the molecular
solvent-accessible-surface area (SASA) or the molecular volume enclosed by SASA. Default.

Once the above basic options are specified, pbsa can proceed with the default options to compute the solvation free
energies with the input coordinates. Of course, this means that you only want to use default options for default
applications. More PB options described below can be defined in the &pb namelist, which is read immediately
after the &cntrl namelist. We have tried hard to make the defaults for these parameters appropriate for calcula-
tions of solvated molecular systems. Please use caution when changing any default options. Also note that the
default options may have changed over time. For a detailed discussion of all related options on the quality of the
calculations, please refer to our recent publication [234].

6.2.3. Options to define the physical constants

epsin

epsout

epsmem

smoothopt

istrng

pbtemp

radiopt
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Sets the dielectric constant of the solute region, default to 1.0. The solute region is defined to be the
solvent excluded volume.

Sets the implicit solvent dielectric constant, default to 80. The solvent region is defined to be the
space not occupied the solute region. i.e., only two dielectric regions are allowed in the current
release.

Sets the membrane dielectric constant. Only used if membraneopt > 0, does nothing otherwise. Value
used should be between epsin and epsout or there may be errors. Previously spelled as epsmemb,
which is being phased out. Defaults to 1.0.

Instructs PB how to set up dielectric values for finite-difference grid edges that are located across the
solute/solvent dielectric boundary.

=0 The dielectric constants of the boundary grid edges are always set to the equal-weight harmonic
average of EPSIN and EPSOUT.

=1 A weighted harmonic average of EPSIN and EPSOUT is used for boundary grid edges. The
weights for EPSIN and EPSOUT are fractions of the boundary grid edges that are inside or
outside the solute surface.[235] Default.

=2 The dielectric constants of the boundary grid edges are set to either EPSIN or EPSOUT depend-
ing on whether the midpoints of the grid edges are inside or outside the solute surface.

Sets the ionic strength (in mM) for the PB equation. Default is 0 mM. Note the unit is different
from that (in M) in the generalized Born methods implemented in Amber. Note also that we are only
dealing with symmetrical solution, so the ionic strength should be equal to the square of the valence
of the symmetrical ions times the ion concentration (in mM).

Temperature (in K) used for the PB equation, needed to compute the Boltzmann factor for salt effects;
default is 300 K.

Option to set up atomic radii.

=0 Use radii from the prmtop file for both the PB calculation and for the NP calculation (see INP).



dprob

iprob

sasopt

saopt

triopt

arcres

6.2. Usage and keywords

=1 Use atom-type/charge-based radii by Tan and Luo [236] for the PB calculation. Note that the
radii are optimized for Amber atom types as in standard residues from the Amber database. If
a residue is built by antechamber, i.e., if GAFF atom types are used, radii from the prmtop file
will be used. Please see [236] on how these radii are optimized. The procedure in [236] can
also be used to optimize radii for nonstandard residues. These optimized radii can be read in
if they are incorporated into the radii section of the prmtop file (of course via RADIOPT = 0).
Default.

Solvent probe radius for molecular surface used to define the dielectric boundary between solute and
solvent. DPROB = 1.4 by default.

Mobile ion probe radius for ion accessible surface used to define the Stern layer. Default to 2.0 A.

Option to determine which kind of molecular surfaces to be used in the Poisson-Boltzmann implicit
solvent model. Default is O.

=0 Use the solvent excluded surface as implemented by[233]

=1 Use the solvent accessible surface. Apparently, this reduces to the van der Waals surface when
the dprobe is set to zero.

=2 Use the smooth surface defined by a revised density function.[237] This must be combined with
IPB > 2.

Option to compute the surface area of a molecule. Default is 0. Once the computation is enabled,
the surface area will be reported in the output file with the subtitle “Total molecular surface”. Note
that only the surface areas for the solvent excluded surface and the solvent accessible surface are
supported in this release.

=0 Do not compute any surface area.

=1 Use the field-view method to compute the surface area.[210]

Option to add trimer arc dots for a more accurate and lower memory mapping method of the analyt-
ical solvent excluded surface. See [233]

=0 Trimer arc dots are not used.

=1 Trimer arc dots are used. Default.

pbsa uses a numerical method to compute solvent accessible arcs. See [233]. The ARCRES keyword
gives the resolution (in the unit of A) of dots used to represent these arcs, default to 0.25 A. These
dots are first checked against nearby atoms to see whether any of the dots are buried. The exposed
dots represent the solvent accessible portion of the arcs and are used to define the dielectric constants
on the grid edges. It should be pointed out that ARCRES should be reduced to (0.125 A) when the
TRIOPT option is turned off to achieve a similar accuracy in the reaction field energies. More
generally, ARCRES should be set to max(0.125 A, 0.5h) when the TRIOPT option is turned on, or
max(0.0625 A, 0.25h) when the TRIOPT option is turned off (% is the grid spacing).

6.2.4. Options for Implicit Membranes

membraneopt Option to turn the implicit membrane on and off. The membrane is implemented as a slab like

region with a uniform or heterogeneous dielectric constant depth profile.

=0 No implicit membrane used (default).
=1 Use a uniform membrane dielectric constant in a slab-like implicit membrane.

=2 Use a heterogeneous membrane dielectric constant in a slab-like implicit membrane. The dielec-
tric constant varies with depth from a value of 1 in the membrane center to 80 at the membrane
periphery. The dielectric constant depth profile was implemented using the PCHIP fitting.
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mprob

mthick

mctrdz

poretype

poreradius

=3 Use a heterogeneous membrane dielectric constant in a slab-like implicit membrane. The dielec-
tric constant varies with depth from a value of 1 in the membrane center to 80 at the membrane
periphery. The dielectric constant depth profile was implemented using the Spline fitting.

Membrane probe radius in A, default to 2.70. This is used to specify the highly different lipid
molecule accessibility versus that of the water.

Membrane thickness in A, default to 40.0. This is different from the previous default of 20 A.

Membrane center in A in the z direction. Default is 0 - membrane centered at the center of the
protein.

Turn on and off the automatic depth-first search method to identify the pore.
=0 Do not turn on the pore searching algorithm.

=1 Turn on the pore searching algorithm.

Controls the radius, in A, of the cylindrical exclusion region. This is no longer needed given the
automatic pore searching algorithm.

6.2.5. Options to select numerical procedures

npbopt

solvopt

accept

maxitn

fillratio

space

nbuffer
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Option to select the linear or the full nonlinear PB equation.

=0 Linear PB equation is solved. Default.

=1 Nonlinear PB equation is solved.

Option to select iterative solvers.

=1 Modified ICCG or Periodic (PICCG) if becopt = 10 is. Default.
=2 Geometric multigrid. A four-level v-cycle implementation is applied by default.

=3 Conjugate gradient (Periodic version available under bcopt = 10). This option requires a large
MAXITN to converge.

=4 SOR. This option requires a large MAXITN to converge.

=5 Adaptive SOR. This is only compatible with NPBOPT = 1. This option requires a large MAX-
ITN converge.

=6 Damped SOR. This is only compatible with NPBOPT = 1. This option requires a large MAXITN
to converge.

Sets the iteration convergence criterion (relative to the initial residue). Default to 0.001.

Sets the maximum number of iterations for the finite difference solvers, default to 100. Note that
MAXITN has to be set to a much larger value, e.g. 10,000, for the less efficient solvers, such as
conjugate gradient and SOR, to converge.

The ratio between the longest dimension of the rectangular finite-difference grid and that of the
solute. Default is 2.0. It is suggested that a larger FILLRATIO, for example 4.0, be used for a
small solute, such as a ligand molecule. Otherwise, part of the small solute may lie outside of the
finite-difference grid, causing the finite-difference solvers to fail.

Sets the grid spacing for the finite difference solver; default is 0.5 A.

Sets how far away (in grid units) the boundary of the finite difference grid is away from the solute
surface; default is 0 grids, i.e., automatically set to be at least a solvent probe or ion probe (diameter)
away from the solute surface.



nfocus

fscale

npbgrid
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Set how many successive FD calculations will be used to perform an electrostatic focussing calcu-
lation on a molecule. Default to 2, the maximum. When NFOCUS = 1, no focusing is used. It is
recommended that NFOCUS = 1 when the multigrid solver is used.

Set the ratio between the coarse and fine grid spacings in an electrostatic focussing calculation.
Default to 8.

Sets how often the finite-difference grid is regenerated; default is 1 step. For molecular dynamics
simulations, it is recommended to be set to at least 100. Note that the PB solver effectively takes
advantage of the fact that the electrostatic potential distribution varies very slowly during dynamics
simulations. This requires that the finite-difference grid be fixed in space for the code to be efficient.
However, molecules do move freely in simulations. Thus, it is necessary to regenerate the finite-
difference grid occasionally to make sure a molecule is well within the grid.

6.2.6. Options to compute energy and forces

ENEOPT is the option to set a method to compute electrostatic energy and forces, and DBFOPT is phased out
in this release.

bcopt

eneopt

frcopt

Boundary condition options.

=1 Boundary grid potentials are set as zero, i.e. conductor. Total electrostatic potentials and energy
are computed.

=5 Computation of boundary grid potentials using all grid charges. Total electrostatic potentials
and energy are computed. Default.

=6 Computation of boundary grid potentials using all grid charges. Reaction field potentials and
energy are computed with the charge singularity free formalism.[230]

=10 Periodic boundary condition is used. Total electrostatic potentials and energy are computed.
Can be used with SOLVOPT =1, 2, 3, or 4 and IPB =1 or 2. It should only be used on charge-
neutral systems. If the system net charge is detected to be nonzero, it will be neutralized by
applying a small neutralizing charge on each grid (i.e. a uniform plasma) before solving.

Option to compute total electrostatic energy and forces.

=1 Compute total electrostatic energy and forces with the particle-particle particle-mesh (P3M)
procedure outlined in Lu and Luo.[217] In doing so, energy term EPB in the output file is set
to zero, while EEL includes both the reaction field energy and the Coulombic energy. The van
der Waals energy is computed along with the particle-particle portion of the Coulombic energy.
The electrostatic forces and dielectric boundary forces can also be computed.[217] This option
requires a nonzero CUTNB and BCOPT =5.

=2 Use dielectric boundary surface charges to compute the reaction field energy. Default. Both
the Coulombic energy and the van der Waals energy are computed via summation of pairwise
atomic interactions. Energy term EPB in the output file is the reaction field energy. EEL is the
Coulombic energy.

=3 Similar to the first option above, a P3M procedure is applied for both solvation and Coulombic
energy and forces for larger systems.

=4 Similar to the third option above, a P3M procedure for the full nonlinear PB equation is applied
for both solvation and Coulombic energy and forces for larger systems. A more robust and
clean set of routines were used for the P3M and dielectric surface force calculations.

Option to compute and output electrostatic forces to a file named force.dat in the working directory.

=0 Do not compute or output atomic and total electrostatic forces. This is default.
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scalec

cutfd

cutnb

nsnba

=1 Reaction field forces are computed by trilinear interpolation. Dielectric boundary forces are
computed using the electric field on dielectric boundary. The forces are output in the unit of
kcal/mol-A.

=2 Use dielectric boundary surface polarized charges to compute the reaction field forces and di-
electric boundary forces [231] The forces are output in the unit of kcal/mol-A.

= 3 Reaction field forces are computed using dielectric boundary polarized charge. Dielectric bound-
ary forces are computed using the electric field on dielectric boundary. [238] The forces are
output in the unit of kcal/mol-A.

Option to compute reaction field energy and forces.

=0 Do not scale dielectric boundary surface charges before computing reaction field energy and
forces. Default.

=1 Scale dielectric boundary surface charges using Gauss’s law before computing reaction field
energy and forces.

Atom-based cutoff distance to remove short-range finite-difference interactions, and to add pairwise
charge-based interactions, default is 5 A. This is used for both energy and force calculations. See
Eqn (20) in Lu and Luo.[217]

Atom-based cutoff distance for van der Waals interactions, and pairwise Coulombic interactions
when ENEOPT = 2. Default to 0. When CUTNB is set to the default value of 0, no cutoff will be
used for van der Waals and Coulombic interactions, i.e., all pairwise interactions will be included.
When ENEOPT = 1, this is the cutoff distance used for van der Waals interactions only. The particle-
particle portion of the Coulombic interactions is computed with the cutoff of CUTFD.

Sets how often atom-based pairlist is generated; default is 1 step. For molecular dynamics simula-
tions, a value of 5 is recommended.

6.2.7. Options for visualization and output

phiout

phiform

outlvlset

outmlvlset
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pbsa can be used to output spatial distribution of electrostatic potential for visualization.

=0 No potential file is printed out. Default.

=1 Electrostatic potential is printed out in a file named pbsa.phi in the working directory. Please
refer to examples in the next section on how to display electrostatic potential on molecular
surface.

Controls the format of the electrostatic potential file.

=0 The electrostatic potential (kT/mol-e) is printed in the Delphi binary format. Default.

=1 The electrostatic potential (kcal/mol-e) is printed in the Amber ASCII format.

=2 The electrostatic potential (kcal/mol-e) is printed in the DX volumetric data format for use with
VMD.

pbsa can be set to write the total level set, used in locating interfaces between regions of differing
dielectric constant, to a DX format volumetric data file. This option will control printing of the total
level set (i.e. both solute-solvent and membrane level sets combined if membrane present)

= false No level set file printed out. Default.
=true Level set printed out in a file named pbsa_lvlset.dx
pbsa can be set to write the membrane level set, used in locating interfaces between regions of

differing dielectric constant, to a DX format volumetric data file. This option controls printing a
separate file for the membrane level set. Does nothing if membraneopt is not turned on.



npbverb

6.2. Usage and keywords

= false No level set file printed out. Default.

=true Level set printed out in a file named pbsa_lvlset.dx

When set to 1, turns on verbose mode in pbsa; default is 0.

6.2.8. Options to select a non-polar solvation treatment

decompopt

use_rmin

sprob

vprob

Option to select different decomposition schemes when INP = 2. See [221] for a detailed discussion
of the different schemes. The default is 2, the ¢ decomposition scheme, which is the best of the
three schemes studied.[221] As discussed in Ref. [221], DECOMPOPT =1 is not a very accurate
approach even if it is more straightforward to understand the decomposition.

=1 The 6/12 decomposition scheme.
=2 The o decomposition scheme. Default

=3 The WCA decomposition scheme.

The option to set up van der Waals radii. The default is to use rmin to improve the agreement with
TIP3P [221].

=0 Use atomic van der Waals ¢ values.

=1 Use atomic van der Waals rmin values. Default.

Solvent probe radius for solvent accessible surface area (SASA) used to compute the dispersion term,
default to 0.557 A in the ¢ decomposition scheme as optimized in Ref. [221] with respect to the
TIP3P solvent and the PME treatment. Recommended values for other decomposition schemes can
be found in Table 4 of [221]. If USE_SAV = 0 (see below), SPROB can be used to compute SASA
for the cavity term as well. Unfortunately, the recommended value is different from that used in the
dispersion term calculation as documented in Ref. [221] Thus two separate pbsa calculations are
needed when USE_SAV = 0, one for the dispersion term and one for the cavity term. Therefore,
please carefully read Ref. [221] before proceeding with the option of USE_SAV = 0. Note that
SPROB was used for ALL three terms of solvation free energies, i.e., electrostatic, attractive, and
repulsive terms in previous releases in Amber. However, it was found in the more recent study [221]
that it was impossible to use the same probe radii for all three terms after each term was calibrated
and validated with respect to the TIP3P solvent. [221, 236]

Solvent probe radius for molecular volume (the volume enclosed by SASA) used to compute non-
polar cavity solvation free energy, default to 1.300 A, the value optimized in Ref. [221] with respect
to the TIP3P solvent. Recommended values for other decomposition schemes can be found in Tables
1-3 of Ref. [221].

rhow_effect Effective water density used in the non-polar dispersion term calculation, default to 1.129 for DE-

use_sav

COMPOPT = 2, the ¢ scheme. This was optimized in Ref. [221] with respect to the TIP3P solvent
in PME. Optimized values for other decomposition schemes can be found in Table 4 of Ref. [221].

The option to use molecular volume (the volume enclosed by SASA) or to use molecular sur-
face (SASA) for cavity term calculation. The default is to use the molecular volume enclosed by
SASA. Recent study shows that the molecular volume approach transfers better from small training
molecules to biomacromolecules.

=0 Use SASA to estimate cavity free energy.
=1 Use the molecular volume enclosed by SASA. Default.

cavity_surften The regression coefficient for the linear relation between the total non-polar solvation free en-

ergy (INP = 1) or the cavity free energy (INP = 2) and SASA/volume enclosed by SASA. The default
value is for INP = 2 and set to the best of three tested schemes as reported in Ref. [221], i.e. DE-
COMPOPT = 2, USE_RMIN = 1, and USE_SAV = 1. See recommended values in Tables 1-3 for
other schemes.
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cavity_offset The regression offset for the linear relation between the total non-polar solvation free energy (INP
= 1) or the cavity free energy (INP = 2) and SASA/volume enclosed by SASA. The default value is
for INP = 2 and set to the best of three tested schemes as reported in Ref. [221], i.e. DECOMPOPT
=2, USE_RMIN =1, and USE_SAV = 1. See recommended values in Tables 1-3 for other schemes.

maxsph pbsa uses a numerical method to compute solvent accessible surface area.[221] MAXSPH variable
gives the approximate number of dots to represent the maximum atomic solvent accessible surface,
default to 400. These dots are first checked against covalently bonded atoms to see whether any
of the dots are buried. The exposed dots from the first step are then checked against a non-bonded
pair list with a cutoff distance of 9 A to see whether any of the exposed dots from the first step are
buried. The exposed dots of each atom after the second step then represent the solvent accessible
portion of the atom and are used to compute the SASA of the atom. The molecular SASA is simply a
summation of the atomic SASA’s. A molecular SASA is used for both PB dielectric map assignment
and for NP calculations.

6.2.9. Options to enable active site focusing

Active site focusing is an extension to the electrostatic focusing method. Electrostatic focusing can be regarded
as a multi-level FDPB calculation (two levels currently implemented) in which a coarse-grid solution is conducted
to set up the boundary condition for the requested fine-grid solution. In the original implementation of electrostatic
focusing, the fine grid always covers all the solute atoms. However in the enhanced implementation, the fine grid
is allowed to cover only a local region of interest, such as an enzyme active site or ligand docking site. In such
applications, most or all of the protein atoms are held frozen during a calculation while only the active site side
chain and the substrate ligand are allowed to move. In principle, energies computed with the local electrostatic fo-
cusing method should correlate with those computed with the original electrostatic focusing method if the movable
substrate/ligand atoms are well within the local region of interest. The “active site” or the local region is specified
as a rectangular box by the following six variables:

xmax The upper boundary of the box in x direction.
xmin The lower boundary of the box in x direction, XMAX has to be greater than XMIN.
ymax The upper boundary of the box in y direction.
ymin The lower boundary of the box in y direction, YMAX has to be greater than YMIN.
zmax The upper boundary of the box in z direction.
zmin The lower boundary of the box in z direction, ZMAX has to be greater than ZMIN.

Of course, these keywords are zero by default, i.e. the original electrostatic focusing would be invoked if these
keywords remain to be the default value of zero.

6.2.10. Options to enable multiblock focusing

This option is no longer supported starting in the Amber 2018 release.

6.3. Example inputs and demonstrations of functionalities

6.3.1. Single-point calculation of solvation free energies

Normally the default pbsa options are capable of dealing with most situations. Users should be fully aware of
the meaning of an option before they change its default value. In all the following example inputs, only the
options that are different from their default values will be shown, and the explanations on the changes will be
given in detail. Here is a sample input file that might be used to perform single structure calculations.
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Sample single point PB calculation

&cntrl

/

&pb

npbverb=1, istrng=150, fillratio=1.5, saopt=1,
/

Note that NPBVERB = 1 above. This generates much detailed information in the output file for the PB and NP
calculations. A useful printout is atomic SASA data for both PB and NP calculations which may or may not
use the same atomic radius definition. Since the FD solver for PB is called twice to perform electrostatic focus
calculations, two PB printouts are shown for each single point calculation. For the PB calculation, a common error
message can be generated when FILLRATIO is set to the default value of 2.0 for small molecules. This may cause
a solute to lie outside of the focusing finite-difference grid.

In this example INP is not set and equal to the default value of 2, which calls for non-polar solvation calculation
with the new method that separates cavity and dispersion interactions. The EDISPER term gives the dispersion
solvation free energy, and the ECAVITY term gives the cavity solvation free energy. The default options for the
NP calculation are set to the recommended values for the 6 decomposition scheme and to use molecular volume
to correlate with cavity free energy. You can find recommended values for other decomposition schemes and other
options in Tables 1-4 of Ref. [221]. If INP is set to 1, the ECAVITY term would give the total non-polar solvation
free energy.

Finally, a few words on the RADIOPT option, set to the default value of 1 instructing PB to use the optimized
values instead of reading the radii from the prmtop file. Starting this release, the RADIOPT option only controls
the radius definition for the PB calculation. The INP=2 calculation automatically uses the default values, such as
atomic radii and solvent probes as optimized in Ref. [221]. On the other hand, the INP=1 calculation is allowed to
use whatever radii that a user decides to use.

The ion strength option ISTRNG is set to 150 in unit mM, a typical value for a physiological environment. The
FILLRATIO option is set to 1.5 because the biomolecule is relatively large. We set saopt to 1 because we need the
information of the molecular surface area (the molecular surface is defined as the solvent excluded surface since
SASOPT is set to its default value 0).

6.3.2. Implicit membrane model

pbsa now supports inclusion of an implicit membrane region in implicit solvation calculations. This feature
is enabled by setting MEMBRANEOPT to 1 (default value is 0, for off). The membrane will extend the solute
dielectric region to include a slab-like planar region running parallel to the xy plane. The thickness is controlled by
the MTHICK option. The default is 40 A. The membrane region will be centered on the protein center by default,
and can be set to a user-provided value using the MCTRDZ option (default is 0). Neither option will have any
effect unless MEMBRANEOPT is set to 1. The dielectric constant can be controlled using epsmem. We set the
membrane interior dielectric constant to a value of 4.0 in this example. This is four times that of the solute which
defaults to 1 (same as vacuum). The value of epsmem should always be set to a value greater than or equal to
EPSIN (solute dielectric constant) and less than EPSOUT (solvent dielectric constant). These default to 1.0 and
80.0 respectively.

When using the implicit membrane model, we recommend SASOPT=0, i.e. the classical solvent excluded
surface, due to its better numerical behavior. When running with the default options, the program will compute
solvent excluded surfaces both with the water probe (DPROB=1.40 by default) and the membrane probe
(MPROB=2.70 by default). This setting was found to be consistent with the explicit solvent MD simulations. It is
also suggested that periodic boundary conditions be used to avoid unphysical edge effects. This is supported in all
linear solvers. In the following we choose Periodic Incomplete Cholesky Conjugate Gradient (PICCG). So we set
IPB = 1, BCOPT = 10, and SOLVOPT =1 (default). In addition, ENEOPT needs to be set to 1 because the
charge-view method (ENEOPT = 2) is not supported for this application.

Sample single point PB calculation with membrane region
&cntrl
ipb=1, inp=0
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/

&pb

radiopt=0, nfocus=1, maxitn=200,
bcopt=10, eneopt=1l, solvopt=1,
sasopt=0, membraneopt=1l, epsmem = 4.0
outlvlset=true, outmlvlset=true

/

The MAXITN option is set to a bigger value, 200, than the default one, 100, because the linear solvers, when
applied to periodic boundary conditions, seem to require slightly more iterations than non-periodic solvers to
converge.

To aid in visualization of the dielectric model, the level set function, which is used to locate the interfacial
surfaces between regions of differing dielectric constant, can be written to output files. Output of the total level
set function, including both the solute-solvent and membrane contributions, can be written to a DX formatted
volumetric data file by setting the OUTLVLSET option to “true”. The membrane contribution can be written to a
separate file by setting the OUTMLVLSET option to “true”. This may take a good deal of extra time, so be sure to
leave it off if you don’t want / need to visualize the levelset surface. Accordingly, NFOCUS is set to 1 because of
the use of periodic boundary condition.

Finally, if calculations need to be performed on a protein with a solvent-filled channel region, this region would
be identified automatically by setting PORETYPE=1.

6.3.3. Single point calculation of forces

Since pbsa is released for single point calculations in AmberTools, no energy minimization or molecular
dynamics is supported. However, the PB procedure can be invoked to print out the numerical electrostatic forces
for developmental purposes. Here is a sample input:

Sample PB force computation
&cntrl

inp=0

/

&pb

npbverb=1, radiopt=0, frcopt=2
/

Note that INP is set to O to turn off non-polar solvation interactions. RADIOPT = 0 means the atomic radii from the
topology files will be used. FRCOPT is set to 2, i.e., induced surface charges are used to compute the electrostatic
energy and forces. Since CUTNB is equal to the default value of zero, an infinite cutoff distance is used for both
Coulombic and van der Waals interactions.

6.3.4. Comparing with Delphi results

Under identical condition, pbsa is highly consistent with Delphi in term of computed reaction field energies. In
this subsection, we briefly go over the details on how you can obtain comparable energies from both programs.
Apparently, you need coordinates, atomic charges, and atomic radii that have exactly the same numerical values in
both the Amber format and the Delphi format, i.e., the pqr format.

For a Delphi computation with the following input parameters:

salt=0.150
ionrad=2.0
exdi=80.0
indi=1.0
scale=2.0
prbrad=1.5
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perfil=50
bndcon=4
1linit=1000

A comparable computation in pbsa can be obtained by using the following input file:

Sample PB for delphi comparison

&cntrl

ipb=1, inp=0

/

&pb

istrng=150, ivalence=1l, iprob=2.0, dprob=1l.5,
radiopt=0, bcopt=5, smoothopt=2, nfocus=1,

/

IPB is set to 1 to make sure pbsa uses exactly the same surface definition as Delphi. Note that the values of exdi,
indi, prbrad, and ionrad in Delphi should be consistent with the values of EPSOUT, EPSIN, DPROB, and IPROB
in pbsa, respectively. In Delphi salt=0.150 is set in the unit of M, while in pbsa ISTRNG = 150 is in the unit of
mM. In Delphi the grid spacing is set as the number of grids per A, i.e., scale=2.0, while in pbsa the grid spacing
is set straight in A as SPACE = 0.5. In Delphi the grid dimension is set as percentage of the solute dimension over
the grid dimension, i.e., perfil=50, which is equivalent to the ratio of solute dimension over grid dimension set as
FILLRATIO = 2 in pbsa. Finally, Delphi sets the boundary condition by bndcon=4 and pbsa sets the boundary
condition as BCOPT = 5; both programs mean to use the Debye-Huckel limiting behavior for each atomic charged
sphere. There are additional options in pbsa that do not have corresponding counterparts in Delphi. For example,
SMOOTHORPT is used to instruct the program to use a specific dielectric boundary smoothing option, which is
equivalent to that used in Delphi when set to 2. (see Section 6.2.3).

6.4. Visualization functions in pbsa

pbsa can produce volumetric data files to allow visualization of electrostatic potential and level set maps. There
are two points to note before continuing.

1. The data files generated can become quite large if small grid spacings are used since they will scale as the
cube of the inverse of grid spacing

2. Unless singularity removal methods are used, the potential at grid nodes corresponding to atom centers may
be quite large when compared to the potential at the molecular / atomic surface. This will often result in poor
contrast during visualization of the potential map, particularly when it is used as a color map for a molecular
surface.

These two points should be kept in mind when determining grid spacing. For visualization purposes, a grid spacing
of about one angstrom should provide good results. If finer spacing is needed, singularity removal (BCOPT = 6)
can be used to prevent poor contrast that could result from the presence of singularities. Lastly, when using grid
spacings of 0.5 A or lower, the output files may become quite large (tens, or even hundreds of megabytes each)
and may take a significant amount of time (up to several seconds each) to generate.

6.4.1. Visualization of electrostatic potential using PyMol

pbsa can produce an electrostatic potential map for visualization in PyMol when setting PHIOUT = 1. By
default, pbsa outputs a file pbsa.phi in the Delphi binary format. The sample input file is listed below:

Sample PB visualization input
&cntrl

inp=0

/
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&pb

npbverb=1, space=1l.,
phiout=1, phiform=0
/

To be consistent with the surface routine of PyMol, the option PHIOUT = 1 instructs pbsa to use the radii as defined
in PyMol. The finite-difference grid is also set to be cubic as in Delphi. The default DPROB value is equal to that
used in PyMol, 1.4 A. A large grid spacing, e.g. 1 A or higher, is recommended for visualization purposes, as
commented above.

Here is an example of loading the potential map in PyMol. First load the molecule in the form of prmtop and
inpcrd. In our case we need to rename our prmtop file to molecule.top and inpcrd file to molecule.rst and load the
molecule with commands

PyMol> load molecule.top
PyMol> load molecule.rst

The molecule will appear as an object “molecule”. Next display the surface of the molecule in the PyMol menu
by clicking “S” and then select surface. Now import the potential map generated by pbsa with the command in
PyMol

PyMol> load pbsa.phi

to create a value map object called “pbsa”. After this, create a value ramp called e_lvl from the potential map with
the command

PyMol> ramp_new e_lvl, pbsa, [-7, 0, 7]
You can assign surface_color to the e_lvl ramp with the command
PyMol> set surface_color, e_1lvl, molecule

This will display the surface with the color scale according to the potential. You can adjust the value scale, such as
[-5, 0, 5], to change the color scale and use “rebuild” command to redraw the surface.

6.4.2. Writing electrostatic potential to DX format volumetric data file

To visualize the pbsa potential using VMD, you will need to set the output to DX format by changing
PHIFORM = 0 to PHIFORM = 2.

Sample PB visualization input
&cntrl

inp=0

/

&pb

npbverb=1, space=1l., sasopt=2,
phiout=1, phiform=2

/

The program will now generate a file called pbsa_phi.dx. This format should be automatically recognized by
VMD. It can be either loaded directly into your molecule or as a separate file.
6.4.3. Loading DX format electrostatic potential data in VMD

1. go to the “File” menu in the VMD Main window.

2. Select “New Molecule...”.

» This will bring up the “Molecule File Browser” window
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3. Click on the “Browse...” button in the “Molecule File Browser” window

4. Select the file “pbsa_phi.dx” that was generated by pbsa using the file selection dialogue that pops up.

* The “Determine file type:” drop down menu should now read “DX”.

5. Click the “Load” button.

VMD will, by default, display the data with an isosurface representation.

6.4.4. Changing the representation model
1. Select “Representations...” from the “Graphics” menu in the “VMD Main” window

* The “Graphical Representations” window should pop up

2. Select the object corresponding to the volumetric data you loaded from the “Selected Molecule” pull down
menu

3. Click on the representation you wish to change

¢ There should be one present for the isosurface being displayed
4. Click on the “Draw style” tab if it is not already selected

5. Select “Volume” from the “Coloring Method” pull down menu if it is not already chosen

¢ Another pull down menu will appear next to it.
¢ If you have multiple data files loaded for the same object you can choose which is used to color your
chosen draw method representation here

6. The “Drawing Method” pull down menu will let you choose a different visual representation model.

¢ To directly visualize potential data, use either “Isosurface” or “Volume Slice”

e VMD can also be used to visualize the corresponding electric field by choosing “Field Lines”.

Displayed below are Volume Slice representations of electrostatic potential maps generated for an aquaporin sys-
tem. Computations were run using the periodic conjugate gradient solver for a 1 A grid spacing, and FILLRATIO
of 2.0. For the systems using implicit water, the charge singularity removal methodology was used.

From Left to right: Vacuum, Water only, Water and 20 A slab-like membrane, Water and 20 A slab-like mem-
brane with 6 A cylindrical channel region removed.

Often, the data ranges will not be consistent between potential distributions for different implicit solvent setups.
E.g. the range of the electrostatic values seen for vacuum will likely be larger than the range for implicit water.
The range of values displayed can be set manually to provide consistent color scaling for comparison.
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6.4.5. Adjusting the color scale of the color map
1. Select “Colors...” from the “Graphics” menu in the “VMD Main” window
e This should cause the “Color Controls” window to pop up
2. Select the “Color Scale” tab

* The color scheme can be selected from the “Method” pull down menu
» The “Offset” and “Midpoint” sliders can be used to adjust the scaling of the color map.

— If singularities are present, it may be difficult to get a good scaling for volume maps generated
with fine grid spacings. In this case, either re-run with singularity removal on, or set the color
scale range manually as shown in the next section.

When singularity removal is not employed, the presence of singularities will cause the range of the electrostatic
potential distribution near the atom centers to be much wider than near the molecular surface. This typically results
in very poor contrast particularly for implicit solvent since the high dielectric constant in the solvent region will
amplify the effect. This can be compensated for by manually setting the Color Scale Data Range.

6.4.6. Changing the color scale range

1. Select desired representation to modify

2. Select “Volume” Coloring Method and Select the desired volumetric map to rescale from the pull down
menu.

» Each time you change the volumetric map being displayed, you will need to repeat this, so it is a good
idea to make multiple representations for each potential data set rather than switching between them
on the same representation.

3. Select the “Trajectory” tab

4. You should see the automatically computed range in the “Color Scale Data Range:” boxes. The left hand
box controls the minimum value for the range, the right hand box controls the maximum value for the range.

5. Set the minimum and maximum values as needed to improve the contrast. Often the inner 10% to 30% of
the total (automatic) range will give good contrast for a one angstrom grid spacing.

6. Click on the “Set” button when you are finished

7. To return to the automatic scaling that was originally calculated by VMD, click the “Autoscale” button.

Electrostatic potential data can also be used as a color map for other drawing methods. You will need to first load
the data into the molecule you wish to display.

6.4.7. Loading electrostatic potential data into an existing molecule

The names of the files are used as labels, so it is useful to rename them from “pbsa_phi.dx” to something more
descriptive before loading.

1. Select the molecule you wish to display the potential color map on in the “VMD Main” window
2. Go to the “File” menu in the VMD Main window.

3. Select “Load Data Into Molecule...”.

 This will bring up the “Molecule File Browser” window

4. Click on the “Browse...” button in the “Molecule File Browser” window
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5. Select the file “pbsa_phi.dx” that was generated by pbsa using the file selection dialogue that pops up.

* The “Determine file type:” drop down menu should now read “DX”.

6. Click the “Load” button.

The data should now be loaded into the molecule you selected.

6.4.8. Using the electrostatic potential data as a color map

Once you have loaded a volumetric data file into a molecule, it can be used to generate a color map for any
representations of that molecules model.

1. Open the “Graphical Representations” window if it is not already open

 Select “Representations...” from the “Graphics” menu in the “VMD Main” window
2. Select the molecule you loaded the data into from the “Selected Molecule” pull down menu
3. Select the representation you wish to map the potential color map onto
4. Select the “Draw Style” tab if it is not already selected

5. Select “Volume” from the “Coloring Method” pull down menu

* Another pull down menu should appear next to it

* Choose the selection that corresponds to the data you just loaded, it should be the last one on the list if
it is the last one that was loaded.

VMD will attempt to automatically scale the color mapping used for Volumetric data that you load. The color scale
may be manually adjusted if needed (see previous section)

6.4.9. Loading and displaying the level set map

The level set used by pbsa to model the solute - solvent interface can be written to an output file in DX format
by setting OUTLVLSET to “true” in the input file.

Sample PB visualization input
&cntrl

inp=0

/

&pb

npbverb=1, space=1l., sasopt=2,
phiout=1, phiform=2,
outlvlset=true

/

The level set will be written to a DX format volumetric data file named “pbsa_lvlset.dx”. This file can be used
to visualize the corresponding molecular surface. The level set file is loaded into VMD in the same manner as an
electrostatic potential data file. Cross sections can be viewed using the “Volume Slice” representation.

Shown below are the level sets for the aquaporin systems shown previously (no level set is shown for vacuum as
there is no dielectric interface being modeled in that system)

From left to right: Water, Water + Slab-like membrane, Water + Membrane with pore region
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6.4.10. Visualizing the molecular surface as an isosurface of the level set

The level set is constructed such that the molecular surface is the locus of all points where the level set is zero.
This allows us to use the Isosurface representation in VMD to display the solvent excluded surface by setting the
“Isovalue” to 0. Alternatively, if we wish to view the potential just outside the surface, we can set the “Isovalue”
to a number slightly higher than 0. E.g. 0.1 or 0.01.

1. Load the level set data file into the molecule.

 This is done using the same procedure as loading an electrostatic potential data file, but the level set
data file will be chosen instead of the potential data file.

2. Create a new Isosurface representation in the “Graphical Representations” window.
3. Select the volume map for the level set from the pull down menu
4. Choose an “Isovalue” at or slightly above 0.

5. Using the “Coloring Method” pull down menu, you may also use a previously loaded electrostatic potential
data file as a color map by selecting “Volume” and then selecting the appropriate volume map from the pull
down menu that appears.

* VMD will automatically assign color scale range every time.

» To compare multiple potential maps, it is often desirable to use the same color scale range for each.
The best way to do this is to make a new representation for each potential map and manually assign the
same color scale range to be identical for each (see previous section)

The examples below were generated for Aquaporin (1IHS in the protein data bank) under various implicit solvent
options using a FILLRATIO of 2.0, grid spacing of 1A. For each calculation, the periodic conjugate gradient
solver with singularity removal was used. The level set for the system modeling implicit water was used to build
the isosurfaces. The electrostatic potential data files were then overlayed as color maps with the color scale ranges
set to [-80000,80000].

From Left to right: Water only, Water + Slab Like Membrane, Water + Membrane with 6A cylindrical pore.

98



6.4. Visualization functions in pbsa

6.4.11. Visualizing interior channels, voids, and solvent pockets

One of the common roles for membrane proteins is to act as a transmembrane channel, to allow specific sub-
stance to pass from one side of a membrane to another. Features such as solvent / ion channels or internal voids
will often be occluded from view by the exterior surface. One option that can allow these to be viewed is to use
the clipping plane tool in VMD.

1. Open the “Exensions” pull down menu in the “VMD Main” window and go to the “Visualization” submenu
and select “Clipping Plane Tool”.

2. The “Clip Tool” window should pop up.
3. The “Distance” slider allows clipping to be set

4. The “Normal” slider sets the normal of the clipping plane.

e The “flip” button on the right will let you clip from front to back, which will be useful to clip the
occluding exteriro surface from the view and reveal the interior.

The clipping tool was used to reveal the internal pore region for the aquaporin system setups used in the previous
section.
From Left to right: Water only, Water + Slab like Membrane, Water + Membrane with pore region excluded.

As an alternative, the level set map generated using PORTYPE=1 with the implicit membrane option will allow
a cylindrical region to be excluded from the membrane level set. The corresponding isosurface will show any
interior cavities or voids which fall within this region for isovalues at or slightly above 0 (since the level set at the
membrane-solute interface will be below 0). See the previous section for details on writing and loading the level
set file.

Shown below is the level set isosurface for the aquaporin system with implicit water plus a membrane with a
cylindrical region removed. The corresponding potential data was again overlayed as a color map. The surface of
the channel region, and the membrane-solvent interface planes are now clearly visible.

6.4.12. Importing / Modifying Atomic Radii to VMD from the prmtop file

Currently, VMD does not support loading radii for atoms directly from the prmtop file when it loads a molecule.
These values can be loaded relatively easily using the tkconsole, however. To do so:
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1. select “Tk Console” from the “Extensions” menu in the “VMD Main” window.

e The “VMD TkConsole” window will then open

2. Be sure that the atom you want to import radii for is the top molecule on the list in the VMD Main window.
If it is not, you will need to replace “top” with the appropriate ID

3. Type or copy and paste the following lines, but DO NOT hit enter yet.

set prot [atomselect “top” all]
$prot set radius {#Radiilist#}

4. You will now need to replace #RadiiList# with the one from the prmtop file.

a) Open the prmtop file for the molecule using a text editor

b) find the section that starts with “%FLAG RADII”

c) Highlight/Select the list of numbers that follows “%FORMAT(5E16.8)”

d) Copy the list (usually done by selecting “Copy” from the “Edit” menu in your text editor)
e) Go back to the “VMD TkConsole” window

f) Highlight/Select #RadiiList#

g) Select “Paste Ctrl-v” from the “Edit” menu in the “VMD TkConsole” window

5. Now hit return

* If this was successful, you should now have the correct radii for each atom in the molecule.
* you can have the console print the list of all radii by typing:

$prot get radius
* For a more human readable printout, use:

for {set ind 0} {$ind<[llength $rad]} {incr ind} \
{puts "Atom $ind radius is [lindex $rad $ind]"}

These radii are used by VMD to display the VDW surface (made by selecting “VDW” from the “Drawing
Method” pull down menu in the “Graphical Representations” window). One useful trick is to set them to be a
small amount larger (say .01 A) than those used to generate the surface. This will ensure that the color map will
represent the external field just outside of the molecule. To modify the radii type or copy the following in the Tk
Console:

set rad [$prot get radius]
for {set ind 0} {$ind<[llength $rad]} {incr ind} \
{1lset rad $ind [expr [lindex $rad $ind] +.01]}

The above code will increase all atomic radii by .01 angstroms. This can be changed if a different amount is
desired. (The code assumes you already followed steps 1 through 5 otherwise $prot will be undefined!)

6.5. pbsain sander and NAB

6.5.1. Electrostatic forces/gradients in pbsa

Force calculation in the finite-difference Poisson-Boltzmann method is straightforward, though not a trivial
issue. It can be shown, by using the variation of the electrostatic free energy, that the electrostatic force density
consists of three components, viz., the reaction field force, the dielectric boundary force, and the ionic force. [239]
Since the ionic force is much smaller in absolute value than the other two components, we only include the reaction
field force and the dielectric boundary force in this release.
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The reaction field force only exists where there are atomic charges, so that it is straightforward to be mapped
onto atoms. In contrast, the dielectric boundary force exists on the molecular surface where the dielectric constant
changes. The surface force, or pressure, cannot be easily mapped onto atoms. This is because a force-mapping
procedure from the molecular surface to atoms apparently needs the derivatives of molecular surface with respect
to atomic positions. However such derivatives do not exist for the widely used molecular surface definition, i.e.,
the solvent excluded surface (SES). We are actively developing an analytical molecular surface definition that is
consistent with the widely used SES definition for the numerical PB methods so that this difficulty will be overcome
in future releases.

Temporarily, a partial solution in the mapping of dielectric boundary force as described by Gilson et al[239]
is implemented for PB dynamics and minimization when the SES definition is used. The stability of the MD
simulation has been much improved with a more accurate mapping method of analytical SES.

6.5.2. Example for pbsa in sander

All pbsa functionalities are available in sander and all input options are exactly the same as in the standalone
pbsa. An apparent exception is IPB: you need to really set IPB to nonzero in order to invoke pbsa functionalities.
All other default values of PB options in sander are same as those in pbsa for single point calculations, whereas
there are some options that have different recommended or default values when PB minimization or dynamics is
enabled. These options are

space=0.25
arcres=0.125
fscale=4
eneopt=2
bcopt=6
frcopt=2

The SPACE, ARCRES and FSCALE are all set for higher resolution of the grid so that the force calculation can
be more accurate. The charge view method (ENEOPT = 2, FRCOPT = 2) is used here because it has been tested
to be able to run stable molecular dynamics simulations. Plus, BCOPT is set to 6 to remove charge singularity for
the same stability purpose. An example input for PBMD is given as follows

Sample PB visualization input
&cntrl

imin=0, ntx=1, irest=0,

ipb=2, ntb=0,

ntc=2, ntf=2,

tempi=100, temp0=100, ntt=3, gamma_ln=1,
nstlim=100000, dt=0.002,
ntpr=100, ntwr=100000, ntwx=100,
/

&pb

npbgrid=500, nsnba=5,

/

IPB is explicitly set to 2 to enable PB dynamics. The NPBGRID option is set to 500, which means the finite
difference grid is regenerated every 500 dynamics steps. NSNBA = 5 means the atom-based pairlist is generated
every 5 steps. Please refer to Chapter 19 for the other &cntrl options. Note that the above input can be used with
sander only.

6.5.3. Example for pbsa in NAB

pbsa functionalities are available in NAB as a part of the standard build. However the available input options
are limited, please refer to the table in Section 39.1 for the list of available pbsa input options. The structures and
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parameters are supplied by NAB’s facility. Here is a sample of calls in a NAB program to the mm_options()
routine, in order to run pbsa:

mm_options ("ntpr=1, cut=99.0"); // No solute-solute cutoff

mm_options ("ipb=2"); // Use PBSA

mm_options ("accept=0.0001"); // Convergence criterion

mm_options ("dprob=1.4"); // Solvent probe radius for SASA

mm_options ("radiopt=1"); // Useatom-type/charge-based radii

mm_options ("fillratio=4"); // Ratio of the grid dimension over the solute dimension for the coarse gr:

6.6. GPU accelerated pbsa

The GPU version of pbsa is called pbsa.cuda. In the Amber 2019 release, some bottleneck setup routines of pbsa
are also ported into the GPU code. A new biconjugate gradient (BiCG) GPU solver is added for solving the linear
system using the second-order IIM (IPB=6) or improved harmonic average methods (IPB=7/8), which generate
unsymmetrical matrices. Together with the GPU-supported solvers, pbsa.cuda is fully GPU-enabled, though the
full GPU support is only available for IPB=2. The workflow and additional bottlenecks are still in the process of
optimization. Based on the pbsa.cuda, a GPU-supported MMPBSA is under development.

For the numerical solver phase, our test shows that Geometric Multigrid (MG), Jacobi-preconditioned CG, and
Red-black SOR are among the optimal ones.[214][215] Our analysis shows that a speedup ratio of about 7 can be
achieved for the overall time, while depending on the solvers and tested systems. Note that the timing measurement
is preliminary and we expect more efficiency gain as the optimization is ongoing.

While the GPU code is considered to be production ready, it is still evolving and has not been tested to the
same extent as the CPU code. Users should excercise caution when using pbsa.cuda. The error checking on
the GPU is not as verbose as it is on the CPU. In particular, simulation failures such as failed PB setup or other
simulation instabilities, may manifest themselves as CUDA launch errors or GPU download failures. These are not
informative error messages. If you encounter problems during a simulation on the GPU you should first try to run
the identical simulation on the CPU to ensure that it is not your simulation setup causing the problems. Feedback
and questions should be posted to the Amber mailing list (see http:/lists.ambermd.org/). Future development will
aim for more robust code and user-friendly interface, and more performance-boost.

This section of the manual describes supported features, accuracy and memory considerations, installation and
other aspects of pbsa.cuda at the time of the release. Note that the rapidly changing nature of this field means the
frequent updates are likely. You should refer to the AmberTools update page (see http.//ambermd.org/bugfixesat.html)
for the most up to date information.

6.6.1. Supported features

pbsa.cuda supports only linear FDPB solvers. The available solver options for this release are MG,
Jacobi-preconditioned CG, Red-black SOR. The BiCG solver is also available for solving linear systems with
unsymmetrical matrices. While among the available solvers, MG is clearly the best solver for large systems as
shown in our analysis. To use this feature, the solver option of pbsa.cuda must be specified as:

solvopt=2 (for MG)
or

solvopt=3 (for Jacobi-preconditioned CG)
or

solvopt=4 (for Red-black SOR)

MG solver is very fast to converge, usually in a few steps with the acceptance criterion of 10~*. For a higher
criterion such as 107° for very large systems, the MG solver may fail to converge due to the single precision used.
To overcome this issue, we have hooked up the MG solver to the Jacobi-preconditioned CG when the residual
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norm no longer decreases rapidly, to utilize both the efficiency of MG and the stability of Jacobi-preconditioned
CG. Make sure you reset MAXITN to a much larger number, i.e. 5000 (versus the default value of 100 for the
default solver). This is to prevent premature termination of the Jacobi-preconditioned CG solver. Currently, the
free boundary condition or the conductor boundary condition (NBC) is supported for all GPU solvers. In
addition, the periodic boundary condition (PBC) is also supported for the Jacobi-preconditioned CG solver or the
BiCG solver. The latter option is useful when simulating periodic systems such as those with membranes. The
boundary condition options to use are:

bcopt=5, or 1 (for NBC)
or
bcopt=10 (for PBC)

We strongly recommend BCOPT=1 for NBC. This is the conductor boundary and has zero cost to set up, but its
solvation energies are very close to those with BCOPT=5 for typical proteins that we have tested. Once
SOLVOPT and BCOPT options are set as above, all other standard serial pbsa features will be supported as is;
you should refer to the previous sections on the usage of the CPU version of pbsa. An example input of single
point solvation free energy calculation using the MG solver in pbsa.cuda is as follows:

&cntrl
ntx=1, imin=1, ipb=2, inp=0

/

&pb
npbverb=1, istrng=0, epsout=80.0, epsin=1.0, space=.5,
accept=0.0001, dprob=1.4, radiopt=1l, fillratio=1l.5,
smoothopt=0, arcres=0.0625, nfocus=1,
bcopt=1, solvopt=2, maxitn=3000

6.6.2. Supported GPUs

pbsa.cuda has been developed based on the NVIDIA CUDA environment and thus only runs on NVIDIA GPUs
at present. Since the GPU code is written in the single precision mode thus there is no requirement for GPU
hardware to support double precision calculations. Consistent with the Amber CUDA requirements, compute
capability 3.0 or above is required. We tested the released code and found it functions well on multiple NVIDIA
GPUs, including Quadro P5000, TITAN Xp, GeForce GTX 1080, and GeForce RTX 2080. We expect that most
mid- to high-end GPUs are supported.

Currently selection of which GPU is used for single GPU runs is automatic if the GPUs are set to process-
exclusive mode (nvidia-smi -c 3), but the recommended approach is to use the CUDA_VISIBLE_DEVICES
environment variable to select which GPU should be used. More details are provided in the section 6.6.4.

6.6.3. Accuracy consideration and memory usage

pbsa.cuda was developed in single precision as single precision operations are widely supported with high
efficiency on most consumer-grade GPUs. Nevertheless, double precision operations are possible, but are at a sig-
nificant performance disadvantage. Specifically we adopted a hybrid precision scheme: the linear system solution
uses single precision, while the linear system setup (i.e. molecular surface and mapping of dielectric constants
etc) and the post-processing of energy and force use double precision, except that with [PB=2, the reaction energy
calculation, the level set density evaluation and the surface area non-bonded list determination use single precision
as they have been ported to GPUs. Extensive tests of electrostatic solvation energy shows that correlation coeffi-
cients between hybrid and double precision codes are 1.0 for both 1073 and 10~ convergence criteria. Maximum
relative errors are 3.9 x 1073 and 5.8 x 107, respectively.

Memory usage is crucial for GPU implementations since memory is often limited on most consumer-grade
GPUs. In the Jacobi-preconditioned CG implementation, typical GPU memory usage is about 92 x Ngrid bytes,
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where Ngrid is the number of grid nodes when discretizing the system with the finite difference method. While in
the MG implementation, where the unified memory is used, the typical GPU memory usage is about 75 x Ngrid
bytes. If the MG—Jacobi-PCG hybrid solver is involved in the computation with tighter convergence criteria, the
typical GPU memory usage is about 135 x Ngrid bytes. Our analysis of the MG solver showed that NVIDIA
Titan Xp cards, which have 12 GB GPU memory, are sufficient to successfully run all our 144 stress tests until
host memory hit the limit first. On the older NVIDIA GTX 980 Ti cards with ~6 GB GPU memory, the MG
implementation is able to successfully complete calculations with ~ 75.0 million grid points given sufficient host
memory. Worth noting is that for extremely large grids, for example those with at least one billion grid points, the
MG implementation generally requires about 70 GB memory, which is far beyond the available memory on most
consumer-grade GPU cards. You can refer to NVIDIA hardware manage tool nvidia-smi to obtain the runtime
memroy allocation information.

6.6.4. Installation and testing

pbsa.cuda must be built separately from the standard serial pbsa installation. Before attempting to build the
GPU version of pbsa, we recommend you first build and test at least the serial version of Amber and AmberTools.
This would help to ensure that issues related to standard compilation on your hardware and operating system are
resolved before you work with the more demanding GPU-related compilation and testing issues. Of course, you
should also be familiar with the Amber compilation and test procedures.

It is assumed that you have already correctly installed and tested the CUDA environment. Additionally the envi-
ronment variable CUDA_HOME should be set to point to your NVIDIA Toolkit installation and SCUDA_HOME/bin/
should be in your $PATH. We recommend users to use CUDA 9.x or CUDA 10.x to use the MG solver, which
relies on advanced data managements, such as unified memory, which are only available in CUDA 8.0 or higher.

To build and install pbsa.cuda, please follow the general instructions for installing CUDA programs, in Sec.
20.6.5. Next you can run the tests using the default GPU with:

cd $AMBERHOME/AmberTools/test
export CUDA_VISIBLE DEVICES=1 # choose the device you wish to test
make test.cuda

Note on some intel platforms, you need to use a larger stack size other than the system default setting to avoid
stack overflow fails when running pbsa.cuda. The following command should do the trick:

ulimit -s unlimited

To determine the device ID for the available hardware in your system, you can run NVIDIA’s deviceQuery
executable included in the CUDA SDK, after unsetting CUDA_VISIBLE_DEVICES environment variable:

unset CUDA_VISIBLE_DEVICES
deviceQuery
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In addition to explicit and continuum implicit solvation models, Amber also has a third type of solvation model
for molecular mechanics simulations, the reference interaction site model (RISM) of molecular solvation[240—
253]. In AmberTools, 1D-RISM is available as rism1d. 3D-RISM is available as an option in NAB, MMPBSA.py
and sander. rism3d.snglpnt is a simplified, standalone interface, ideal for calculating solvation thermodynamics on
individual structures and trajectories. Details specific to using sander and sander.MPI can be found in Chapter 19.

7.1. Introduction

RISM is an inherently microscopic approach, calculating the equilibrium distribution of the solvent, from which
all thermodynamic properties are then determined. Specifically, RISM is an approximate solution to the Ornstein-
Zernike (OZ) equation[241, 250, 251, 254, 255]

h(r12,Q21,Q2) = ¢(r12,Q21,Q) +p /dl‘3 dQ3c(r13,Q1,Q3) h(r,Q3,Q,), (7.1

where ry; is the separation between particles 1 and 2 while Q; and Q, are their orientations relative to the vector
ri2. The two functions in this relation are /4, the total correlation function, and c, the direct correlation function.
The total correlation function is defined as

hap (Fab, Ray ) = ab (Taps Ras ) — 1,

where g, is the pair-distribution function, which gives the conditional density distribution of species b about a. In
cases where only radial separation is considered, for example by orientational averaging over site ¢ of species a
and site y of species b, gives the familiar one dimensional site-site radial distribution function, gay(ray).

For real mixtures, it is often convenient to speak in terms of a solvent, V, of high concentration and a solute, U,
of low concentration. A generic case of solvation is infinite dilution of the solute, i.e., pU — 0. We can rewrite
Equation (7.1), in the limit of infinite dilution, as a set of three equations:

BYY (r12,Q1,Q) = CVV(712791792)+PV/61T3 dQzcVV (r13,Q1,93) 1YY (r32,Q3,), (7.2)
MY (12, 90,02) = ¢ (12,90, 02) 4 Y [ drsda ™ (riz, 01, 3) 8 (132, D5, 02). (13)
BV (r12,Q1,) = CUU(712,Q1,92)+PV/d1‘3 dQsz %Y (r13,Q1,93) h¥Y (r32,Q3,Q). (7.4)

Equation (7.3) is directly relevant for biomolecular simulations where we are often interested in the properties of
a single, arbitrarily complex solute in the solution phase. Solutions to Equation (7.3) can be obtained using 3D-
RISM. However, a solution to Equation (7.2) for pure solvent is a necessary prerequisite and is readily obtained
from 1D-RISM.

To obtain a solution to the OZ equations it is necessary to have a second equation that relates / and ¢ or uniquely
defines one of these functions. The general closure relation is[254]

8(r12,Q1,Q2) = exp[—Pu(riz, Q1,Q) +h(ri2,21,Q2) — c(ri2, 1, Qo) + b(ri2,Q1,Q)] (7.5)

u is the potential energy function for the two particles and b is known as the bridge function (a non-local functional,
representable as infinite diagrammatic series in terms of # [254]). It should be noted that u is the only point at
which the interaction potential enters the equations. Depending on the method used to solve the OZ equations, u
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is generally an explicit potential. In principle, it should now be possible to solve our two equations. For example,
we may wish to use SPC/E as a water model. Inputting the relevant aspects of the SPC/E model into u, ID-RISM
can be used to calculate the equilibrium properties of the SPC/E model. A different explicit water model will yield
different properties.

A fundamental problem for all OZ-like integral equation theories is the bridge function, which contains multiple
integrals that are readily solved only in special circumstances. In practice, an approximate closure relation must be
used. While many closures have been developed, at this time only three are implemented in 3D-RISM: hypernetted-
chain approximation (HNC), Kovalenko-Hirata (KH) and the partial series expansion of order-n (PSE-n).

For HNC, we set b = 0, giving[254]

§MNC(r12,Q1,Q2) = exp (—Bu(riz, Q1,Q2) +h(ri2, Q1,Q) — c(ri2,Q1,Q))
=exp (t*(r12,Q1,22)) (7.6)

where t* is the renormalize-indirect correlation function. HNC works well in many situations, including charged
particles, but has difficulties when the size ratios of particles in the system are highly varied and may not always
converge on a solution when one should exist. Also, as the bridge term is generally repulsive, HNC allows particles
to approach too closely, overestimating non-Coulombic interactions[251].

KH is a combination of HNC and the mean spherical approximation (MSA), the former being applied to the
spatial regions of solvent density depletion (g < 1), including the repulsive core, and the latter to those of solvent
density enrichment (g > 1), such as association peaks[250, 251]

eXp(t*(hz,Qth)) for g(r12,21,) <1

(1.7)
1+t*(r12791,§22) forg(rlg,Ql,Qg)>1

&M (r12,Q1, Q) :{

Like HNC, KH handles Coulombic systems well but overestimates non-Coulombic interactions. Unlike HNC, it
does not have difficulties with highly asymmetric particle sizes and readily converges to stable solutions for almost
all systems of practical interest. The reliability of the KH closure makes it particularly suitable for molecular
mechanics calculations.

PSE-n offers the ability to interpolate between KH and HNC. Here, the exponential regions of solvent density
enrichment are treated as a Taylor expansion,

eXP<f*(r1z,Qth)) for g(r12,21,Q) <1

) (7.8)
Yo . Q1.@)) /it for g(r12,Q1,Q2) > 1

EN (112, Q1,) = {

In the case of n = 1, the KH closure is obtained, while in the limit of n — oo HNC is recovered. This allows a
balance between the numerical stability of KH and the often better accuracy of HNC.

7.1.1. 1D-RISM

1D-RISM is used to calculate bulk properties of the solvent and is a prerequisite for 3D-RISM, for which the
primary result is the bulk solvent site-site susceptibility in reciprocal space, x V" (k). As its name would suggest,
1D-RISM is a one-dimensional calculation. The six-dimensional OZ equations are reduced to one dimension (ra-
dial separation) via the fundamental RISM approximation[241-244, 254, 255], which produces the intramolecular
pair correlation matrix,

Oy(k) = sin(krgy)/ (kray) (7.9)

where o and 7 label the different atom types in the model. Note that atoms of the same type in RISM theory
have the same Lennard-Jones and Coulomb parameters. For example, most three site water models have two
RISM types, oxygen and hydrogen. Depending on the model, propane, C3Hg, may have two carbon types and two
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hydrogen types. Equation (7.2) then becomes
(1) Z / dr'dr" o (|r — 7' ey (|7 — 1)) [@vy(7") + Pyhvy()]
/ ’krdk{ [lfpa)c]‘la)}
ay

gw B et o). (7.10)

Equation (7.10) must be complemented with one of the five closures currently supported by rism1d (see Sub-
section 7.4.1). In 1d, these are site-site closures and there is no orientational dependence. For example, the HNC
closure (Eq. (7.6)) becomes,

8oy (1) = exp [~ Buay(r) + hay(r) = cay(r)] . (71D

Equation (7.10), with KH, HNC or PSE-n closures, is readily applicable to liquid mixtures, with site indices
of the site-site correlation functions enumerating interaction sites on all (different) species in the solution and the
intramolecular matrix (7.9) set equal to zero for sites ¢,y belonging to different species.

A dielectrically consistent version of 1D-RISM theory (DRISM) enforces the proper dielectric asymptotics of
the site-site correlation functions, and so provides the self-consistent dielectric properties of electrolyte solution
with polar solvent and salt in a range of concentrations, including the given dielectric constant of the solution
[256].

The 1D-RISM integral equations are then solved for the site-site direct correlation function in an iterative man-
ner, accelerated by the modified direct inversion of the iterative subspace (MDIIS) [251, 257]. All correlation
functions are represented as one-dimensional grids and the convolution integrals in Equation (7.10) are performed
in reciprocal space by making use of a fast Fourier transform applied to the short-range parts of all the correlations,
while the electrostatic asymptotics are separated out and Fourier transformed analytically [251-253].

1D-RISM is a general method and not restricted to water or pure solvents. For example, 1D-RISM may be used
to treat solutions of aqueous alkali and halide ions at various concentrations [258]. The output from 1D-RISM can
then be used for complex solutes, such as DNA [259], in 3D-RISM.

7.1.2. 3D-RISM

With the results from 1D-RISM, a 3D-RISM calculation for a specific solute can be carried out. For 3D-RISM
calculations, only the solvent orientational degrees of freedom are averaged over and Equation (7.3) becomes[249,

250]
Y (r -¥ / 'Y (r—1') 20V (1), (7.12)

where x(}’)\,’ (r) is the site-site susceptibility of the solvent, obtained from 1D-RISM and given by

Xy (r) = 0y (1) + pachyyy (7).

3D-RISM supports HNC, KH and PSE-# closures (see Sections 7.6.1, 39.1 and 34.3.1). As with the 1D-RISM
closures, these are constructed by analogy from Eqs. 7.6-7.8. For example, HNC becomes

g];NC’UV (r) =exp (—ﬁugv (r)+ hl)fv (r)— CEV (1')) . (7.13)

As with 1D-RISM, correlation functions are represented on (3D) grids, convolution integrals are performed in
reciprocal space and a self-consistent solution is iteratively converged upon using the MDIIS accelerated solver.
There is one 3D grid for each solvent type for each correlation function. For example, for a solute in SPC/E water
there will be both gjj" (r) and gg" (r) grids. Each point on the gjj" (r) will give the fractional density of water
hydrogen a that location of real-space.
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To properly treat electrostatic forces in electrolyte solution with polar molecular solvent and ionic species, the
electrostatic asymptotics of all the correlation functions (both the 3D and radial ones) are treated analytically [251,
252, 260]. The non-periodic electrostatic asymptotics are separated out in the direct and reciprocal space and the
remaining short-range terms of the correlation functions are discretized on a 3D grid in a non-periodic box large
enough to ensure decay of the short-range terms at the box boundaries [260]. The convolution of the short-range
terms in the integral equation (7.12) is calculated using 3D fast Fourier transform [261, 262]. Accordingly, the
electrostatic asymptotics terms in the thermodynamics integral (7.15) below are handled analytically and reduced
to one-dimensional integrals easy to compute [260].

With a converged 3D-RISM solution for AUV and YV, it is straightforward to calculate solvation thermody-
namics. From the perspective of molecular simulations, the most important thermodynamic values are the excess
chemical potential of solvation (solvation free energy), u®* and the mean solvation force, f}w (R;), on each solute
atom, i. 4 can be obtained through analytical thermodynamic integration for HNC,

.uex,HNC _ kBTZpg /dl‘ |:; (thJ!V(r))Z o CEV(I.) _ ;hgv(r)cgv(r)] R (7.14)
KH,
”ex,KH _ kBTZPX/dr [; (h[dIV(r»z@ (7}13\](1‘)) _ Cgv(l') — ;hgv(r)cgv(r)} R (7.15)
o
and PSE-n,

X -n ' 1 2 1
pe P T EpY [ a5 (0 () - 80 - Y ) ()
o

% n+1
—%@(@V(r))} ., (7.16)

where O is the Heaviside function.

Analogous versions of Eqns. 7.6, 7.15 and 7.16 are used in 1D-RISM. While these are used for DRISM they
are have been derived for XRISM. Furthermore, these equations have been derived a number of different ways
with slightly different functional forms of the —%hc term [250, 263-266]. These different functional forms are
equivalent in XRISM but not in DRISM. The form introduced by Pettitt and Rossky [264] is the most popular
in the literature and the default selection in rismid. It is possible to have rismld evaluate and output all three
functional forms (see Output) but, for DRISM, none of these expressions are strictly correct.

The force equation

ou oudY (r—R;)
— _ I d uv o] l
IR; Zp“/ e (N —5k,

o

7V (R;)

is valid for all closures with a path independent expression for the excess chemical potential, such as HNC, KH
and PSE-n closures implemented in 3D-RISM [240, 267-269].

In addition to closure specific expressions for the solvation free energy, other approximations also exist. The
Gaussian fluctuation (GF) approximation[270, 271] is given as

1

pueGF — kBTZpO\; /dr {—cgv (r)— Eh‘év (r)cg" (r) (7.17)
a

and has been shown to yield improved absolute solvation free energies for both polar and non-polar solutes[271,
272] but not necessarily for relative free energies[273]. It is not associated with a particular closure but is typically
used in place of the expression for a given closure.

Egs. (7.14)-(7.16) give the total solvation free energy, AGso, but it is often useful to decompose this into elec-
trostatic (solvent polarization), AGp,l, and non-electrostatic (dispersion and cavity formation), (AGgis +AGeay),
terms. Conceptually, we can divide the path of the thermodynamic integration into two steps: first the solute
without partial charges is inserted into the solvent (dispersion and cavity formation) and then partial charges are
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introduced, which polarize the solvent,
,uex = AGgo1 = AGpol + AGgis + AGeay-

AGy is produced by a 3D-RISM calculation on the charged solute. AGp is then the difference of the two
calculations. As a point of reference, generalized-Born and Poisson-Boltzmann methods calculate only AGy, and,
typically, use a calculation involving solvent accessible surface area to predict AGgis + AGcay.

7.1.3. Analytic Temperature Derivatives

For the thermodynamic analysis of solvation, it is often useful to calculate the energetic and entropic contribu-
tions, £V and —T'$*°!" respectively, to the solvation free energy. It has been shown that it is possible to analytically
decompose the solvation free energy into these two contributions when the solvation free energy has a closed ana-
Iytical form, such as with HNC and KH closure [274]. In what follows, the analytical expression of energetic and
entropic contributions to the solvation free energy are derived in the framework of 1D-RISM theory with HNC
closure. The similar derivation can be applied to other closures as well as to the framework of 3D-RISM theory.
At this time, temperature derivatives are implemented for with HNC, KH and PSE-n closures in both 1D- and
3D-RISM [275].

The solvation free energy of species U in a solution consisting of N total species is expressed in the RISM-HNC
framework as

U on U on M 1
:ul?ﬁ\lc =kgT Z Z Py /dr { hay —cay(r) — shay(r)cay(r)| -
o M=1 Y 2

The differentiation of the solvation free energy with respect to the temperature 7 leads to

on U

N
SritiNe = ik +HhsT L )
o M=1

on M

Z pyfdr [hay(r) Orhay(r) —8rcay(r) — %5Thay(r) “Cay(r)— %hay(r) . 5Tcay(r)1 .
Y

where Or is T aa Since UiNe Vo= gsolnU 7§50l e have &y yfﬁ\% = 75U and therefore the above equation
can be rearranged as

on U

solv,U s 1
T = —kBT Z
a

Y py/dr |j’lay r) - Orhoy(r) — Orcay(r) — %5Thay(r) “Cay(r) — Ehay(r) : &Cay(r)] :
Y
(7.18)

=

1

It is noted that the solvation energy £*°*U can be viewed as consisting of two contributions: one arising from

creation of a polarized cavity (in pure solvent) and the other corresponding to the energy of embedding the solute
molecule into the cavity. The former is the solvent reorganization energy and the latter is the average
solute-solvent interaction energy that is obtained as Y. Y .y Py Jdrugygay.

The temperature derivatives of correlation functionsdrh(r) and drc(r) can be obtained by solving the tempera-
ture derivative of RISM-HNC equations

6rh(k) = w(k)ére(k)w(k) + pw(k)dre(k)h(k) + pw(k)e(k)drh(k)

and

Srhay(r) = |47 + Srhay(r) = Srcay(r)] (hay(r) +1).

Some practical examples can be found in [276], [277] and [275].
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7.1.4. Treecode Summation for Electrostatic Interactions

One of the most computationally expensive parts of the non-periodic 3D-RISM calculation is computing Coulomb
potential between the solute sites and solvent grid in real-space and the related long-range asymptotics of the direct
and total correlation functions in both real- and reciprocal-space [273]. These functions must be computed on Npox
grid points from M solute atoms, which is an O(MMNy.x) operation and can become prohibitively expensive for
large systems. While the cost of reciprocal-space calculations can be mitigated using a simple cutoff in wavelength
(see the asympKSpaceTolerance option in Sections 7.6.1, 7.7.2.1, and 39.1), such a treatment would lead to
large errors for real-space calculations. Instead, we employ cluster-particle treecodes, which are a class of fast
summation methods that can be used to reduce the cost of computing the interactions between the Myox grid point
targets and M solute atom sources to O((M + Npox ) 102(Noox ) )-

To speed up computation, the treecode replaces a collection of far-field particle-particle interactions with one
particle-cluster interaction, where the clusters are nodes within a hierarchical octtree. This treecode requires three
parameters: a multipole acceptance criterion (MAC), 0, a Taylor series expansion order parameter, p, and a maxi-
mum target number per leaf, Ny [278]. The MAC determines if the cluster and particle are well-separated and the
interaction is evaluated, or if further children in the tree of target clusters are traversed. If the ratio of the radius
of the cluster of targets to the distance between the cluster center and a source particle is less than 0, then the
interaction is evaluated. Otherwise, we traverse the children clusters of the target cluster. The Taylor series expan-
sion order parameter p specifies the order of the Taylor expansion for evaluating the cluster-particle interaction. A
recurrence relation is used to calculate the Taylor coefficients. Ny determines the maximum number of targets in a
leaf target cluster, i.e., a node at the lowest level of the octtree. If a target leaf-source particle interaction fails the
MAC, then the interactions are evaluated directly.

When such a procedure is used, the potential, V, at a target site,X;, due to a collection of M source particles, y;,
with associated charges, g;, can be written as the sum of the direct interactions for the leaf and the Taylor series
expansions that may be computed at each level,

L
Vi)=Y qoxiy)+Y, Y a;0(xi.y)),

y;€D I=1y;€l

where ¢ is a general potential function. L is the number of tree levels, where level 1 is the root cluster and level L
denotes the leaves. A target site will then belong to a nested sequence of clusters, x; € C, C ... C Cr, where cluster
C; is at level [. The direct calculation is only performed for source terms not well-separated from the targets, as
determined by the MAC.

When the targets in a cluster, C;, are well-separated from a set of source sites, a Taylor expansion is used to
approximate the potential. Here, the cluster’s geometric center is denoted x. and I; denotes the list of all source
particles y; that are well separated from cluster C; but not from cluster Cy,...,C;_;. Expanding the second term
¢ (x;,y ;) about x., the center of cluster /, gives

P 1 k
Y qioxiy)~ Y a; ) EaffP (Xéayj) (Xi—Xi)
i€l yi€l  |k||=0""
P Kk
- ) ()

(k]| =0

where the coefficients my are

() = T ()l (.3,

Y€l

and the Taylor coefficients ak are
1
ag (Xian) = Egykﬁb (Xi,¥;)-

Note that this is a Taylor series in three dimensions, where ||K|| = k| + k, + k3, k! = k; ko k3!, 8;‘ = 8}],(1‘ 8;?22 8)1,{33,

(x; —%c)* = (i1 — %)M (xi2 — x2)*? (xi3 — xe3)", and 1,2, 3 denote the three respective Cartesian directions.
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7.2. Practical Considerations

Previous work [279, 280] established recurrence relations for Coulomb and screened Coulomb interactions. The
cluster-particle treecode in 3D-RISM employs recurrence relations to calculate Taylor coefficients for Coulomb
interactions as well as the asymptotic direct correlation and total correlation functions. The Taylor series for the
Coulomb potential and the asymptotic direct correlation function converge exactly to their respective interactions;
the Taylor series for the asymptotic total correlation function, however, uses an additional far field approximation
which does not exactly approach the underlying interaction.

See section 7.2.3 and Table 7.2 for suggested settings.

7.1.5. Molecular Reconstruction

3D spatial distributions of solvation thermodynamics can provide insights into the role of water in a binding
site, potentially identifying waters that can or cannot be easily displaced. Such maps can be easily obtained from
the integrands of the relevant functions, such as the excess chemical potential, Eq. (7.16), or solvation energy, Eq.
(7.18). However, since 3D-RISM is a site-site theory, separate distribution grids are produced for the each solvent
site; e.g., one for each of hydrogen and oxygen. The result of simply adding these together is messy and difficult
to interpret.

To obtain molecule thermodynamic distributions, qualitatively similar to those produced by grid inhomogeneous
solvation theory, we use the intramolecular correlation function, Eq. (7.9), to reconstruct the molecular spatial
distribution [281]. We begin by considering an arbitrary thermodynamic quantity, A (r), and identifying a central
site, ¢, such as oxygen in water. Then the molecular distribution is approximated by

A(r) ~Aq (r) +ga (r) ; Woy (r) * Ay (r).
yY#a

Since the intramolecular correlation function contains the distance between two sites in the same molecule, the
convolution, *, radially projects Ay (r) the bond length distance, rqy. The result is then multiplied by the pair
distribution function of the central site, which weights the contributions by the relative density of the central site.
For example, the molecular excess chemical potential of water would be calculated as

1 (1) = 1 (1) + 0 (1) wom (1) 4 (r).

The excluded volume voxels are zeroed out in this approach, so integrating the molecular reconstruction does not
yield the same result as integrating the site distribution grids, though it may be close to the value provided by UC
or PC+ corrections.

At this time, the method is only implemented for water and assumes that oxygen is the first site. The method can
be turned on using the molReconstruct flag in sander, rism3d.snlgpnt, or NAB, in which case the molecular
reconstruction is output in addition to any requested site-based thermodynamic distributions, such as the excess
chemical potential or entropy.

7.2. Practical Considerations

7.2.1. Computational Requirements and Parallel Scaling

Calculating a 3D-RISM solution for a single solute conformation typically requires about 100 times more com-
puter time than the same calculation with explicit solvent or PB. While there are other factors to consider, such as
sampling confined solvent or overall efficiency of sampling in the whole statistical ensemble at once, this can be
prohibitive for many applications. Memory is also an issue as the 3D correlation grids require anywhere from a
few megabytes for the smallest solutes to gigabytes for large complexes. A lower bound and very good estimate
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7. Reference Interaction Site Model

for the total memory required is

Total memory > 8bytesx | Npox NY | 2Mypis+ 1+ Naecomp  Npropagate
—_ N = Y——

¢ residual u polar decomp past solutions

A%
(Nbox + 2N, N;) 4 + 1 + 2N
asymptotics  FFT scratch g,h

where Npox = Ny X Ny, X N, is the total number of grid points, N V is the number of solvent atom species and Nypris
is the number of MDIIS vectors used to accelerate convergence. uYY, ¢UV and the residual of cVV are stored in
real-space only and require a full grid for each solvent. ¢YV and its residual also require Nyipys grids for the
MDIIS routine (see the mdiis_nvec keyword) and Npropagate grids to make use of solutions from previous solute
configurations to improve the initial guess (see the npropagate keyword). If a polar/non-polar decomposition is
requested (see the polardecomp keyword) an additional set of grids for past solutions with no solute charges is
kept (Ngecomp = 2); by default this is turned off (Ngecomp = 1). The full real space grid plus an additional 2Ny N,
grid points are needed (due to the FFT) for g and & for each solvent species and for the four grids required
to compute the long range asymptotics. Memory, therefore, scales linearly with N,ox while computation time
scales as O(Nyox 10g(Npox)) due to the requirements of calculating the 3D fast Fourier transform (3D-FFT). To
overcome these requirements, two options are available beyond optimizations already in place, multiple time steps
and parallelization. Multiple time step methods are available only in sander (Chapter 19) and are applicable to
molecular dynamics calculations only. Parallelization is available for all calculations but is limited by system size
and computational resources.

Both sander and NaB have MPI implementations of 3D-RISM (see Section 7.5.5 for NAB compiling instruc-
tions) that distribute both memory requirements and computational load. As memory is distributed, the aggregate
memory of many computers can be used to perform calculations on very large systems. Memory distribution is
handled by the FFTW 3.3 library so decomposition is done along the z-axis. If a variable solvation box size is
used, the only consideration is to avoid specifying a large, prime number of processes (> 7). For fixed box sizes,
the number of grids points in each dimension must be divisible by two (a general requirement) and the number
of grid points in the z-axis must be divisible by the number of processes. sander.MPI also has the additional
consideration that the number of processes cannot be larger than the number of solute residues; NAB does not suffer
from this limitation.

7.2.2. Output

gUV, AUV and YV files can be output for 3D-RISM calculations and are useful for visualization and calculation of
thermodynamic quantities. These use the ASCII Data Explorer (DX) file format (See http://ambermd.org/formats.html)
so there is one file for each solvent atom type for each requested frame. Each file is (348 =+ Npox X 16%) bytes,
which can quickly fill disk space. Also, very few visualization programs are capable of displaying both molecular

and volumetric trajectories.

7.2.3. Numerical Accuracy

Numerical accuracy depends on the residual tolerance specified for the numerical solution at runtime and the
solvation box physical size and grid spacing. In most cases, you will need to test these parameters to ensure you
have the accuracy required. As a rough guide, the numerical error in the solvation free energy is related to the
tolerance by

EAG,,, =~ 10 X tolerance. (7.19)

Molecular dynamics [240], minimization and trajectory post-processing [273] have different requirements for
the maximum residual tolerance. Molecular dynamics does well with a tolerance of 1079 and npropagate=5.
Minimization requires tolerances of 10~'! or lower and is typically limited to drms > 10~*. Trajectory post-
processing for MM/RISM should use enough digits to obtain the necessary accuracy when differences in solvation
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1jTolerance
<0 0 >0
<0 Fixed box size with Fixed box size with Fixed box size with
dimensions of solvbox. L] dimensions of solvbox. No dimensions of solvbox. L]
cutoff fit to box size and LJ cutoff or correction cutoff with 1jTolerance
correction applied. applied. applied. Correction applied if
G the box size is large enough.
(] . .
H 0 1jTolerance=tolerance/10 Error. Box size is selected to fit the
2 and the box size is selected to cutoff. Correction applied if
fit the cutoff. Correction the box size is large enough.
applied.
>0 Box size determined by Box size determined by Box size determined by
buffer. LJ cutoff fit to box buffer. No LJ cutoff or buffer. Correction applied if
size and correction applied. correction applied. the box size is large enough.

Table 7.1.: The relationship between 1jTolerance, tolerance, buffer, and solvbox in determining 3D-RISM
solvent box and Lennard-Jones cutoff values.

free energy are computed. For example, if a error < 0.2kcal/mol is required for AAGjqyy, then AGyopy should
be computed with an absolute error of 0.1kcal/mol. The relative error required to achieve this depends on the
magnitude of AGqly-

Almost all applications should use a grid spacing of 0.3 to 0.5 A or smaller. A larger grid spacing quickly leads
to severe errors in thermodynamic quantities. Smaller grid spacing may be necessary for some applications (e.g.,
mapping potentials of mean force).

The size of the solvation box can be set in a number of ways; e.g., setting the box size directly, setting a buffer
distance between the solute and the edges of the solvent box or should typically be at least 14 A for water or
larger for ionic solutions. The solvation box size should be increased until the thermodynamic properties converge
(see Section 7.5.1). Systems with a neutral solute or non-ionic solvent are the simplest case, as solvent box size
associated errors are primarily due to the truncation of the Lennard-Jones potential. Fortunately, this error can be
corrected for if a cutoff is applied and the cutoff does not extend beyond the solvent box. In general, when using
this correction, a cutoff where

u]&J (reut) < tolerance/10 (7.20)

does not affect numerical precision of the calculation. Since long range Coulomb interactions are handled analyt-
ically by the long range asymptotics functions [252, 273], the solvent box size can be determined by the cutoff
distance in many cases, which is calculated from the maximum error in the Lennard-Jones calculation and is de-
termined at run time by the combination of 1jTolerance, tolerance, buffer, and solvbox values used. The
behavior is summarized in Table 7.1 on page 113.

For calculations with charged solutes in ionic solvent, the absolute size of the box required for sufficient nu-
merical accuracy will depend on the absolute charge of the concentration of ions. Generally, lower ion concentra-
tions require larger solvent boxes. Here, we recommend experimenting with different buffer sizes and setting the
Lennard-Jones tolerance according to Eq. (7.20).

Independent of solvent-box size and grid spacing, time can be saved by truncating the reciprocal space expres-
sions for the long range asymptotics. In general, a cutoff where

cAg”) (keut) < tolerance/10 (7.21)

does not affect numerical precision of the calculation. The cutoff in reciprocal space is determined by asympKSpaceTolerance.
For solutes with more than 1000 atoms, it becomes beneficial to replace the direct sum, real-space calculations of

the Coulomb and long-range asymptotic interactions with treecode fast summation. Table 7.2 contains suggested

parameter choices for treecode summation based off experience. Some calculated values are more sensitive than

others, so we recommend experimenting with these settings for your system.

113



7. Reference Interaction Site Model

treecodeMAC treecodeOrder treecodeNO
Total Correlation Function 0.3 max (2, W 500
Direct Correlation Function 0.3 max (2, W 500
Coulomb 0.3 max (2, fwoliclerance) 114 500

Table 7.2.: Suggested 3D-RISM treecode parameters.

7.2.4. Solvation Free Energy Corrections

3D-RISM with HNC-like closures is known to overestimate the non-polar component of the solvation free
energy. Several alternate expressions for the solvation free energy have been developed to correct this and are
based all, or in part, on the partial molar volume (PMV) of the solute. These include the Universal Correction
(UC) [282], Ng Bridge Correction (NgB) [283] and the Pressure Correction Plus (PC+/3D-RISM) correction [284].
3D-RISM currently implements UC and PV+/3D-RISM as runtime options. NgB results can be calculated from
the standard thermodynamic output if the polarDecomp option is used but is not implemented directly. UC and
NgB are both parameterized corrections. So, parameters for these corrections must be used only with the .xvv
file used to create them. Our implementation of UC uses the excess chemical potential of the closure rather than
the GF functional, as we have found this provides better results in general [275]. All of these corrections have
been almost exclusively used with pure water under ambient conditions, though there are promising results for UC
with non-polar liquids.[285] Using these methods with different solvents and co-solvents is a subject of on-going
research.

7.3. Work Flow

Using 3D-RISM with SANDER or NAB for molecular dynamics, minimization or snapshot analysis is very
similar to using implicit solvent models like GBSA or PBSA. However, some additional preliminary setup is
required, the extent of which depends on the solvent to be used.

3D-RISM requires detailed information of the bulk solvent in the form of the site-site susceptibility, " ", and
properties such as the temperature and partial charges. This is read in as an .xvv file, which is produced by a
1D-RISM calculation. If another 3D-RISM calculation is to be preformed with any details of the bulk solvent
changed (e.g., temperature or pressure) a new .xvv file must be produced. Examples of precomputed . xvv files
for SPC/E and TIP3P water can be found in $AMBERHOME/AmberTools/test/rismld.

Special care must be taken when producing .xvv files for use with 3D-RISM, particularly with respect to grid
parameters. It is important that the spatial extent of the grid be large enough to capture the essential long range
features of the solvent while the spacing must be fine enough to sample the short-range structure. A grid spacing
of 0.025 A is sufficient for most applications. The number of grid points required, which will determine the
physical length of the grid in A, generally depends on the properties of the solvent. Low concentration aqueous
salt solutions typically require much larger grids than pure bulk water. A good indicator that the grid is large
enough is convergence of delhv0 in the .xvv file. When converged, delhv0 should retain four to five digits of
precision when the number of grid points is doubled.

The ability of 3D-RISM to perform temperature derivatives and calculate solvation energy and entropy requires
.xvv files with with temperature dependence information. rism1d must be run with entropicDecomp option turned
on (Section 7.4.1). The version number in the . xvv file header indicates the maximum information available. Ver-
sion 1.001 (current) allows temperature derivatives and solvation entropies and energies for all reported quantities.
Version 1.000 (since Amber12) does not allow temperature derivatives of the PMV or solventation energies and
entropies of PMV-based corrections. Version 0.001 does not have information for any temperature derivatives.

1D-RISM calculations require details of the some bulk properties of the solvent, such as temperature and di-
electric constant, and an explicit model of the molecular components. These are read in from one or more .md1
files, depending on the composition of the solvent. Several .md1 files are included in the Amberl1 distribution
and can be found in $AMBERHOME /dat/rismld/model. These include many of the explicit models for solvent and

\A%
b
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ions used with the Amber force fields. Other solvents models may be used by creating appropriate MDL files. See
Section 7.8 for format details.

7.3.1. Solution Convergence

The default parameters for 3D-RISM are selected to provide the best performance for the majority of systems.
In cases where a convergence is not achieved, the strategies below may be useful.

7.3.1.1. Closure Bootstrap

When a PSE-n or HNC closure is desired, the most effective method to overcome convergence issues is to use
a low order closure solution as a starting guess. The KH closure should be the starting point as it is numerically
robust and, typically, converges easily in the vast majority of case. After this, higher orders of PSE-n can be used
until the desired closure is reached. The procedure for 1D-RISM and 3D-RISM differs slightly in practice.

1D-RISM  rismld can use restart files to implement this approach (see Section Subsection 7.4.1). First, run
rismld with the KH closure to convergence. Then use the .sav file as input for the next highest closure. The root
name of the .sav file must be the same as your .inp file. To avoid overwriting lower order solutions, name the files
by closure or use separate directories. You will have to rename the .sav files as you go.

3D-RISM All 3D-RISM interfaces have closure bootstrapping builtin via the closure and tolerance keywords.
Closures should be specified as an ordered list with last closure being the highest order closure. The solutions of
the intermediate closures can have a high tolerance. The default tolerance for intermediate closures is 1 and there
is no observed benefit to tolerances less than le-2. See details in Subsection 7.6.1, Subsection 7.7.2.1 and Section
39.1.

7.3.1.2. MDIIS Settings

MDIIS default setting are appropriate for most cases. Should your residual diverge or the solver get stuck on a
particular value, you can try modest adjustments.

Decrease mdiis_del mdiis_del controls the step size of MDIIS. A smaller step size can help convergence but if
this is set too small it can cause convergence problems. For rismld, this should be no lower than 0.1 or 0.2. For
3D-RISM, it should be 0.5 at the lowest.

Increase mdiis_nvec This is the number of trial solutions that are saved for predicting a new solution. The
optimal number for rapid convergence is typically 10 for 3D-RISM and 20 for 1D-RISM. However, for 3D-RISM,
the default choice of 5 requires much less memory and is computationally faster even though more iterations are
required. Increasing the mdiis_nvec may help for 3D-RISM but is unlikely to help for 1D-RISM.

Increase mdiis_restart Occasionally, the MDIIS routine goes in the wrong direction and the residual increases
significantly. If it increases more than mdiis_restart then the MDIIS routine selects the solution with the lowest
residual and purges the other trial solutions. The default value of 10 can be too aggressive and cause the solver to
cycle. Increasing the value to 100 or 1000 sometimes allows the solver to recover from a misstep.

7.3.1.3. Parameter Annealing

Chargeless, hot gases are the easiest systems to converge. For 1D-RISM, this can be used to bootstrap a solution
in a similar manner to closure bootstrapping. By slowly turning on charges, lowering the temperature or increasing
the density, a converged solution may be reached. This only works for 1D-RISM because it requires restarting
from a previous solution. As with closure bootstrapping, files should be carefully renamed during the procedure.
There is no general protocol but the parameter increment should be reduced as the target value is approached. E.g.,
turning on charges in a linear fashion usually isn’t helpful.
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7.3.1.4. Forcefield selection

The forcefield may affect convergence due to the number of solvent sites involved or the particular parameters
of the forcefield.

Number of Sites Molecules with more sites are more difficult to converge. Six or more sites is already difficult
to converge and more that 10 may not be possible under any circumstances. One solution is to use a united atom
or coarse grained forcefields to reduce the number of sites.

Alternate Parameterization Some parameter sets simply yield a stiffer set of equations to solve. Choosing an
alternate parameter set may allow convergence with only small differences in the numerical results. For example,
the cSPC/E water model with SPC/E Joung/Cheatham ions is easier to converge at higher ion concentrations in
1D-RISM than cTIP3P water with TIP3P Joung/Cheatham ions. Both models give nearly identical results in RISM
at lower concentrations but NaCl in cTIP3P water will not converge above 0.5 M for the PSE-3 closure despite
using all of the above methods.

7.4. rismid

1D-RISM calculations are carried out with rismld, and require only one input file with an . inp suffix. The
input file is listed on the command line without this suffix.

rismld inputfile

Parameters for the calculation are read in from parameters name list.

7.4.1. Parameters

Note that these keywords are not case sensitive.

Theory
theory [DRISM] The 1D-RISM theory to use.

DRISM Dielectrically consistent RISM (recommended).
XRISM Extended RISM.

closure [KH] The type of closure to use.

KH Kovalenko-Hirata (recommended).
PSEn Partial serial expansion of order n. E.g., “PSE3”.
HNC Hyper-netted chain equation.
PY Percus-Yevick.
entropicDecomp [1] Solve another set of integral equations to calculate the temperature derivative. This typically

adds less than 50% to the compute time and yields an energy/entropy decomposition of the excess
chemical potential for all species and sites.

0 Do not calculate the temperature derivative.

1 Calculate the temperature derivative.

Grid Size
dr [0.025] Grid spacing in real space in A.
nr [16384] Number of grid points. Should be a product of small prime factors (2, 3 and 5).
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Output

outlist [] Indicates what output files to produce. Output file names use the root name of the input file with
an extension listed below. This is a list of any combination of the following characters in any order,
upper or lower case.

U UYV(r) Solvent site-site potential in real space, inputfile.uvv (see http://ambermd.org/formats.html).

X xVV (k) Solvent site-site susceptibility in reciprocal space. Required input for 3D-RISM, input file.Xvv
(see http://ambermd.org/formats.html).

G GVV(r) Solvent site-site pair distribution function in real-space, input file.gvv (see http://ambermd.org/formats.ht
B BYV(r) Solvent site-site bridge correction in real space, input f£ile.bvv (see http://ambermd.org/formats.html).
T Thermodynamic properties of the solvent, inputfile.therm (see http://ambermd.org/formats.html).

E exNVV(r), exNVY Solvent site-site running, inputfile.exnvv, and total, inputfile.n00 (see
http://ambermd.org/formats.html), excess coordination numbers in real space.

N NVV(r) Solvent site-site running coordination numbers in real space, input £ile.nvv (see http://ambermd.org/forma
Q exQVV Solvent site-site excess total charge of site y about ¢, input £i1e.q00 (see http://ambermd.org/formats.html).

S §VV(k) Solvent site-site structure factor in reciprocal space, input £i1e.svv (see http://ambermd.org/formats.html).
rout [0] Largest real space separation in A for output files. If O then all grid points will be output.
kout [0] Largest reciprocal space separation in A™' for output files. If O then all grid points will be output.

ksave [-1] Output an intermediate solution every ksave steps. If ksave <= 0 then no intermediate restart
files are written. If any restart files are present at run time (. sav suffix) they are automatically used.
However, such files are non-portable binary files.

progress  [1] Write the current residue to standard output every progress iteration. If progress <= 0 then
residue is not reported.

selftest  [0]If ‘1’, perform a self-consistency check and output the results to inputfile.self.test. Only
tests applicable to the input parameters and system are performed. The results will depend on the
input parameters (e.g., ‘tolerance’) used.
Species keywords
For each molecular species in the solvent mixture, a species name list should be provided.

density [1 (Required.) Density of the species in M. See "units’ below.

units [‘M’] Units for density value. Options are ‘M’ (molar), ‘mM’ (millimolar), ‘1/A”3’ (number per
A3), ‘g/lem”3’ (g/em?) or kg/mA3’ (kg/m?).

model [1 (Required.) Relative or absolute path to and name of the .md1 file with the parameters for this
solvent molecule.
Solution Convergence

rism1d uses MDIIS to accelerate convergence. The default parameters for this method are usually near optimal
but some systems can be difficult to converge. In such cases it may be useful to use a small step size (mdiis_del=0.1
or 0.2). Occasionally, the target tolerance of 107! can not be achieved. A tolerance of 10710 to 107! is often
sufficient but it is advisable to check how sensitive your calculations are to this.

mdiis_nvec [20] Number of MDIIS vectors to use.

mdiis_del [0.3] MDIIS step size.
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mdiis_restart [10]If the current residual is mdiis_restart times larger than the smallest residual in memory,
then the MDIIS procedure is restarted using the lowest residual solution stored in memory. Increasing
this number can sometimes help convergence.

tolerance [le-12] Target residual tolerance for the self-consistent solution.
maxstep [10000] Maximum number of iterations to converge to a solution.

extra_precision [1] Controls the use of extra precision routines at key points in the 1D-RISM solver. This can
be useful for achieving low tolerances or for very large box lengths but increases computational cost.
Strongly recommended for solutions with charged particles (e.g., salts).

0 No extra precision routines are used.

1 Sensitive matrix multiplication and addition routines are done in extra precision. A
small computational cost is incurred.
Solvent Description
temperature [298.15] Temperature in Kelvin.
dieps [1 (Required.) Dielectric constant of the solvent.

nsp [1 (Required.) Number of species (molecules) in the solutions. Also indicates the number of species
name lists to follow.

Other
smear [1.0] Charge smear parameter in A for long range asymptotics corrections.
adbcor [0.5] Numeric parameter for DRISM.

7.4.2. Example

Mixed ionic solvent.

&PARAMETERS

THEORY='DRISM', CLOSURE='KH', !Theory
NR=16384, DR=0.025, !Grid size and spacing
OUTLIST='x', ROUT=384, KOUT=0, !Output
MDIIS_NVEC=20, MDIIS_DEL=0.3, TOLERANCE=1l.e-12, IMDIIS
KSAVE=-1, !Check pointing
PROGRESS=1, 'Output frequency
MAXSTEP=10000, 'Maximum iterations
SMEAR=1, ADBCOR=0.5, !Electrostatics
TEMPERATURE=310, DIEPS=78.497, NSP=3 !bulk solvent properties

/

&SPECIES

!SPC/E water
DENSITY=55.296d0, !very close to 0.0333 1/A3
MODEL="../../../dat/rismld/model/SPC.mdl"

/

&SPECIES
!Sodium
units="mM'
DENSITY=100,
MODEL="../../../dat/rismld/model/Na+.mdl"

/

&SPECIES
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!Chloride

units='g/cm*3’

DENSITY=35.45e-4,
MODEL="../../../dat/rismld/model/Cl-.mdl"

7.5. 3D-RISM in NaAB

3D-RISM functionality is available in NAB and is built as part of the standard install procedure. MPI function-
ality for 3D-RISM in NAB requires some additional information at compile time, described in Section 7.5.5. At
this time, standard molecular dynamics and minimization with non-polarizable force fields are supported.

7.5.1. Solvation Box Size

The non-periodic solvation box super-cell can be defined as variable or fixed in size. When a variable box size
is used, the box size will be adjusted to maintain a minimum buffer distance between the atoms of the solute and
the box boundary. This has the advantage of maintaining the smallest possible box size while adapting to changes
of solute shape and orientation. Alternatively, the box size and grid spacing can be explicitly specified at run-time
and used for the duration of the calculation.

Regardless of how the solvation box is defined, the “center” of the solute is placed in the middle of the box. The
center of the solute and how it is placed in the solvent box is controlled with the centering keyword. Generally,
centering=1 (center=center-of-mass) is the default and should be used for MD and centering=2 (center=center-of-
geometry) should be used for minimization. Center-of-mass and center-of-geometry are conserved quantities in
each method respectively.

Other options for solute centering are available for special situations. To restrict the absolute position of grid-
points to be integer multiples of the grid-spacing (e.g., (2.5 A,3.0 A) for a grid spacing of 0.5 A) use centering=3
for center-of-mass and centering=4 for center-of-geometry. To perform centering only on the first calculation (i.e.,
first step of MD or minimization or first frame of a trajectory analysis), use the negative integer corresponding to
the desired center definition. This allows the solute to drift in the solvent box. Finally, with some care, it is possible
to achieve custom centering using centering=0. Here, no solute centering is performed and the solvent grid has an
origin of (0,0,0) and a center of (X'le;gth + dx,y'leggth +dy, Z'leggth +dz). If you use centering=0, it is advisable to
use a fixed-size solvent box.

Solvent box dimensions have a strong effect on the numerical precision of 3D-RISM. See Subsection 7.2.3 for
recommendation on selecting an appropriate box size and resolution.

7.5.2. /0

All 3D-RISM options, including input and output files, are specified using mm_options () (see Section 39.1).
Generated output files can be quite large and numerous. For each type of correlation, a separate file is produced
for each solvent atom type. The frequency that files are produced is controlled by the ntwrism parameter. For
every time step that output is produced, a new set of files is written with the time step number in the file name. For
example, a molecular dynamics calculation using an SPC/E water model with ntwrism=2 and guvfile=guv will
produce two files on time step ten: guv.0.10.dx and guv.H1.10.dx.

7.5.3. Examples

Molecular Dynamics

mm_options ("ntpr=100, ntpr_md=100");
mm_options ("dt=0.002"); //Large time step
mm_options ("rattle=1"); //Use RATTLE
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mm_options ("cut=999.0"); //No solute-solute
//cut off
mm_options ("rism=1"); //Use 3D-RISM-KH

mm_options ("xvvfile=../rismld/spc/spc.xvv.save"); //1D-RISM input

Minimization

mm_options ("ntpr=1, cut=999.0"); //No solute-solute

//cut off
mm_options ("rism=1"); //Use 3D-RISM-KH
mm_options ("xvvfile=../rismld/spc/spc.xvv.save"); //1D-RISM input
mm_options ("tolerance=le-11"); //Low tolerance
mm_options ("solvcut=999.0"); //No solute-solvent

//cut off
mm_options ("centering=2"); //Center solute

//using center-
//of-geometry

7.5.4. Thermodynamic Output

When nptrism= 0 thermodynamic data about the solvent is output as a table of solute and solvent information.
When using the NAB and rism3d.snglpnt interfaces, units are indicated in the key table or as indicated below.

7.5.4.1. Solute Information

solutePotentialEnergy [kcal/mol] provides the total potential energy of the solute and its decomposition into
the potential energy terms. The solvation free energy for the current 3D-RISM closure is included as this
corresponds to the solvation forces the solute would experience. The energy terms, in order, are Total, LJ,
Coulomb, Bond, Angle, Dihedral, H-Bond, LJ-14, Coulomb-14, Restraints, and 3D-RISM.

7.5.4.2. Solvent Information

Solvent information consists of core set of thermodynamic information and optional solvation free energy cor-
rections. Temperature derivatives and polar/non-polar decomposition is performed when entropicDecomp and
polarDecomp options are used. Temperature derivatives names have a postfix of _dT, except for free energies,
which are decomposed into solvationEnergy and -TS. Polar/non-polar components have polar or apolar added to
the front of the quantity name.

rism_excessChemicalPotential [kcal/mol] Excess chemical potential or solvation free energy for the selected
closure (see Section 7.1.2).

rism_excessChemicalPotentialGF [kcal/mol] (Optional) Excess chemical potential or solvation free energy us-
ing the Gaussian fluctuation functional (see Eq. (7.17)).

rism_excessChemicalPotentialPCPLUS [kcal/mol] (Optional) Excess chemical potential or solvation free en-
ergy using the PC+/3D-RISM functional (see Section 7.2.4).

rism_excessChemicalPotentialUC [kcal/mol] (Optional) Excess chemical potential or solvation free energy us-
ing the UC functional (see Section 7.2.4).

120



7.6. rism3d.snglpnt

rism_solventPotentialEnergy [kcal/mol] Interaction energy between the solute and solvent, calculated from

MU =Y pa [ drgl (1l v)
o

rism_excessParticlesCorrected [#] Excess number of solvent particles compared to a uniform distribution at
bulk density.

rism_excessChargeCorrected [e] Excess charge of solvent particles compared to a uniform distribution at bulk
density.

rism_KirkwoodBuff [A3] All space integral of the total correlation function.

rism_DCFintegral [10\3] All space integral of the direct correlation function.

7.5.5. Compiling MPI 3D-RISM

Executables compiled with mpinab and 3D-RISM must link to both C and Fortran MPI libraries, which is not
the default behavior of most MPI compilers. As there are a wide variety of MPI implementations and no standards
for naming Fortran libraries, 3D-RISM is not included by default when compiling mpinab. The additional steps
required to include 3D-RISM in mpinab are

1. If

a) you are using OpenMPI 1.7 or higher or MPICH, proceed to step 2.

b) you are not using OpenMPI 1.7 or higher or MPICH, identify the Fortran 77 libraries corresponding to
your MPI implementation. These will be found in the lib directory for your MPI implementation and
will likely contain "f" or "f77" in the file name. Set the XTRA_FLIBS environment variable to contain
the compiler directive to link the library.

For example, the OpenMPI 1.6 and MPICH?2 library files are libmpi_f77.a and libfmpich.a respectively
(the suffix may vary) and XTRA_FLIBS could be explicitly set as:

OpenMPI export XTRA_FLIBS="lmpi_usempif08 —lmpi_mpifh"
MPICH2 export XTRA_FLIBS=-lfmpich

2. Run configure and specify both -mpi and -rismmpi. For example:

./configure —mpi -rismmpi gnu

3. For dynamically linked executables (the default), set your LD_LIBRARY_PATH environment variable to the
location of your MPI library:
export LD_LIBRARY_PATH=$MPTHOME/lib
SMPIHOME is the base directory for you MPI installation.

7.6. rism3d.snglpnt

3D-RISM functionality is also available in the command line tools rism3d.snglpnt and rism3d.snglpnt.MPI in-
stalled at compile time. These programs perform single point 3D-RISM calculations on trajectories and individual
solute snapshots. No other processing is done to the structures so unwanted solvent molecules should be removed
before hand. Except for minimization and molecular dynamics, all 3D-RISM features are available. Thermody-
namic data is always output (see Section 7.5.4). Note that these executables are built by NAB so please see Section
7.5.5 to ensure rism3d.snglpnt.MPI is built.
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7.6.1. Usage

3D-RISM specific command line keywords generally correspond to keyword options available in NAB’s mm_options
(see Section 39.1). If run without input, rism3d.snglpnt prints default settings for all parameters.

--pdb PDB file (Required, input.) PDB file for the solute. Coordinates are only used if a restart or trajectory
file is not supplied.

—--prmtop prmtop file (Required, input.) Parameter topology file for the solute.
—--rst restart file (Optional, input.) Coordinates for the solute in restart format.

—-yltraj trajectory file (Optional, input.) Trajectory for the solute in NetCDF or ASCII format.

——XVV XVV

file (Required, input.) Bulk solvent susceptibility file from 1D-RISM (see http://ambermd.org/formats.html).
——guv YV root (Optional, output.) Root name for 3D solvent pair distribution files.

——cuv Y root (Optional, output.) Root name for 3D solvent direct correlation files.

——nhuv #/Y root (Optional, output.) Root name for 3D solvent total correlation files.

——uuv 0V root (Optional, output.) Root name for 3D solvent potential [kT] files.

-—asymp asymptotics root (Optional, output.) Root name for 3D real-space long range asymptotics for total
and direct correlation files. This will produce one file for each of C and H for each frame requested
and does not include the solvent site charge. Multiply the distribution by the solvent site charge to
obtain the long-range asymptotics for that site.

V' root (Optional, output.) Root name for 3D solvent charge density distribution files. This is the

charge density [e/ A] at each grid point with contributions from all solvent types.

——quv QU

--chgdist charge distribution root (Optional, output.) Root name for 3D solvent charge distribution files.
This gives a point charge [e] at each grid point with contributions from all solvent types.

-—exchem  (Optional.) Root name for 3D excess chemical potential distribution files.
--solvene (Optional.) Root name for 3D solvation energy distribution files.

——entropy (Optional.) Root name for 3D solvation entropy distribution files.

—-potUV (Optional.) Root name for 3D solute-solvent potential energy distribution files.

--molReconstruct (Optional.) For any thermodynamic distributions requested, also out the molecular recon-
struction (see section 7.1.5).

--volfmt  (Optional.) Format of volumetric data files. May be dx for DX files or xyzv for XYZV format (see
http://ambermd.org/formats.html).

--closure closure name (Optional.) A whitespace separated list of one or more of KH, HNC or PSEn where

“n” is a positive integer. If more than one closure is provided, the 3D-RISM solver will use the
closures in order to obtain a solution for the last closure in the list when no previous solutions are
available. The solution for the last closure in the list is used for all output. This can be useful for

difficult to converge calculations (see §7.3.1).

——closureorder closure order (Deprecated.) Specifies the order of the PSE-n closure if the closure name is
given as “PSE” or “PSEN” (no integers).

—-noasympcorr (Optional.) Turn off long range asymptotic corrections for thermodynamic output only. Long-
range asymptotics are still used to calculate the solution.
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-—pbuffer distance (Optional.) Minimum distance between the solute and the edge of the solvent box. Use this
with -—grdspc. Incompatible with -—-ng and --solvbox. See §7.2.3 for details on how this affects
numerical accuracy and how this interacts with 1§Tolerance, and tolerance.

--solvcut distance (Optional.) Sets Lennard-Jones cutoff distance for periodic calculations. If ’-1° or no value
is specified then the buffer distance is used.

--grdspc 3D grid spacing (Optional.) Comma separated linear grid spacings for x, y and z dimensions. Use
this with —-buffer. Incompatible with --ng and --solvbox.

--ng 3D grid points (Optional.) Comma separated number of grid points for x, y and z dimensions. Use this
with —--solvbox. Incompatible with —-buffer and --grdspc.

--solvbox 3D box length (Optional.) Comma separated solvation box side length for x, y and z dimensions.
Use this with --ng. Incompatible with ——-buffer and --grdspc. See §7.2.3 for details on how this
affects numerical accuracy and how this interacts with 1jTolerance, and tolerance.

——tolerance residual target (Optional.) A whitespace separated list of maximum residual values for solu-
tion convergence. When used in combination with a list of closures it is possible to define different
tolerances for each of the closures. This can be useful for difficult to converge calculations (see
§7.3.1). For the sake of efficiency, it is best to use as high a tolerance as possible for all but the last
closure. See §7.2.3 for details on how this affects numerical accuracy and how this interacts with
1jTolerance, buffer, and solvbox. Three formats of list are possible.

one tolerance All closures but the last use a tolerance of 1. The last tolerance in the list is used
by the last closure. In practice this, is the most efficient.

two tolerances All closures but the last use the first tolerance in the list. The last tolerance in the
list is used by the last closure.

n tolerances Tolerances from the list are assigned to the closure list in order.

--1jTolerance Lennard-Jones accuracy (Optional.) Determines the Lennard-Jones cutoff distance based on
the desired accuracy of the calculation. See §7.2.3 for details on how this affects numerical accuracy
and how this interacts with tolerance, buffer, and solvbox.

—-—asympKSpaceTolerance reciprocal space long range asymptotics accuracy (Optional.) Determines
the reciprocal space long range asymptotics cutoff distance based on the desired accuracy of the cal-
culation. See §7.2.3 for details on how this affects numerical accuracy. Possible values are

<0 asympKSpaceTolerance=tolerance/10,
0 no cutoff, and
>0 given value determines the maximum error in the reciprocal-space long range asymp-

totics calculations.

——treeDCF flag (Optional.) Use direct sum or the treecode approximation to calculate the direct correlation
function long-range asymptotic correction.

0 Use direct sum.

1 Use treecode approximation.

-—treeTCF flag (Optional.) Use direct sum or the treecode approximation to calculate the total correlation
function long-range asymptotic correction.

0 Use direct sum.

1 Use treecode approximation.

——treeCoulomb flag (Optional.) Use direct sum or the treecode approximation to calculate the Coulomb poten-
tial energy.
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0 Use direct sum.

1 Use treecode approximation.

-—treeDCFMAC acceptance criterion (Optional.) Treecode multipole acceptance criterion for the direct cor-
relation function long-range asymptotic correction.

-—treeTCFMAC acceptance criterion (Optional.) Treecode multipole acceptance criterion for the total corre-
lation function long-range asymptotic correction.

-—treeCoulombMAC acceptance criterion (Optional.) Treecode multipole acceptance criterion for the Coulomb
potential energy.

-—treeDCFOrder order (Optional.) Treecode Taylor series order for the direct correlation function long-range
asymptotic correction.

-—treeTCFOrder order (Optional.) Treecode Taylor series order for the total correlation function long-range
asymptotic correction. Note that the Taylor expansion used does not converge exactly to the TCF
long-range asymptotic correction, so a very high order will not necessarily increase accuracy.

-—treeCoulombOrder order (Optional.) Treecode Taylor series order for the Coulomb potential energy.

——treeDCFNO leaf size (Optional.) Maximum number of grid points contained within the treecode leaf clus-
ters for the direct correlation function long-range asymptotic correction. This sets the depth of the
hierarchical octtree.

-—treeTCFNO leaf size (Optional.) Maximum number of grid points contained within the treecode leaf clus-
ters for the total correlation function long-range asymptotic correction. This sets the depth of the
hierarchical octtree.

——treeCoulombN0 leaf size (Optional.) Maximum number of grid points contained within the treecode leaf
clusters for the Coulomb potential energy. This sets the depth of the hierarchical octtree.

--mdiis_del step size (Optional.) MDIIS step size.
--mdiis_nvec # of vectors (Optional.) Number of previous iterations MDIIS uses to predict a new solution.

--mdiis_restart # of vectors (Optional.) If the current residual is mdiis_restart times larger than the
smallest residual in memory, then the MDIIS procedure is restarted using the lowest residual solution
stored in memory. Increasing this number can sometimes help convergence.

--maxstep step number (Optional.) Maximum number of iterative steps per solution.
--npropagate # old solutions (Optional.) Number of previous solutions to use in predicting a new solution.

—-polarDecomp (Optional.) Decomposes solvation free energy into polar and non-polar components. Note that
this typically requires 80% more computation time.

-—entropicDecomp (Optional.) Decomposes solvation free energy into energy and entropy components. Also
performs temperature derivatives of other calculated quantities. Note that this typically requires 80%
more computation time and requires a .xvv file version 1.000 or higher (see §7.1.3 and 7.3).

-—gf (Optional.) Compute the Gaussian fluctuation excess chemical potential functional (see §7.1.2).
—-pc+ (Optional.) Compute the PC+/3D-RISM excess chemical potential functional (see §7.2.4).

-—uccoeff a,b[,al,bl] (Optional.) Compute the UC excess chemical potential functional with the provided
coefficients (see §7.2.4). a and b are the coefficients for the original UC functional, though using
the closure excess chemical potential functional. al and b/ are optional and provide temperature
dependence to the correction (UCT in [275]).
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-—centering method (Optional.) Select how solute is centered in the solvent box.

-4 Center-of-geometry with grid-point rounding. Center on first step only.

-3 Center-of-mass with grid-point rounding. Center on first step only.

-2 Center-of-geometry. Center on first step only.

-1 Center-of-mass. Center on first step only.

0 No centering. Dangerous.

1 Center-of-mass. Center on every step. Recommended for molecular dynamics.
2 Center-of-geometry. Center on every step. Recommended for minimization.

3 Center-of-mass with grid-point rounding.

4 Center-of-geometry with grid-point rounding.

—-verbose level (Optional.)

0 No output.
1 Print the number of iterations required to converge.

2 Print convergence details for each iteration.

7.7. 3D-RISM in sander

3D-RISM functionality is available in sander and is built as part of the standard install procedure. MPI func-
tionality for 3D-RISM in sander requires some additional information at compile time, described in Section 7.5.5.
Some features specific to sander are discussed here.

7.7.1. Multiple Time Step Methods for 3D-RISM

At this time, the computational cost of 3D-RISM is still prohibitive for performing calculations at each step of
molecular dynamics calculations. One of the most effective ways to reduce this computational burden is to reduce
the number of solutions calculated by using multiple time step (MTS) methods. Two MTS methods, r-RESPA and
force-coordinate extrapolation (FCE), are implemented for 3D-RISM in sander and can be combined such that
solutions are only calculated once every 4 ps [286].

r-RESPA[287, 288] and I-Verlet[289] impulse MTS algorithms are widely used methods to reduce the compu-
tational load of long-range interactions while maintaining the desirable properties of energy conservation and time
reversibility. Impulse MTS can be invoked for 3D-RISM independent of the existing r-RESPA implementation
using the RISMnRESPA variable. For typical biomolecular simulations, impulse MTS is limited to a maximum
step size of 8 fs if using the optimized Nose-Hoover thermostat (ntt=9) and 5 fs[290] for the Langevin thermostat.
Since the computational load of calculating all internal interactions of the solute is small compared to the 3D-RISM
calculation, it is recommend to use dt=0.001, nrespa=1 and RISMnRESPA=2 or 5, depending on the integrator.

To overcome the stability limitation of impulse MTS, FCE uses one of several available extrapolation methods
to efficiently predict the forces for some time steps rather than computing a full 3D-RISM solution[240, 291].
In the simplest extrapolation scheme, corresponding to FCEnt rans=0, forces, {F}, on NU solute atoms for the
current time step f; are approximated as a linear combination of forces from the n previous time steps obtained
from 3D-RISM calculations,

(F} = Y an {F}) [ € 3D-RISM steps. (7.22)
=1

The weight coefficients ay; are obtained by expressing the current set of coordinates, {R}(k), as a linear combination
of coordinates from the n previous time steps for which 3D-RISM calculations were performed. That is, the current
set of coordinates is projected onto the basis of n previous solute arrangements by minimizing the norm of the
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Figure 7.1.: Multiple time step methods in 3D-RISM. RISMnRESPA (= 5) is the number of base time steps between
application of solvation forces (exact or extrapolated). FCEnbasis(= 4) is the number of previous
solutions used to extrapolate forces, in this case four previous solutions. Once FCEnbasis solutions
have be calculated, exact 3D-RISM forces are calculated every FCEstride(= 2) xRISMnRESPA fime
steps; solvation forces are otherwise obtained through extrapolation.

difference between the current 3 x NY matrix of coordinates {R}(k) and the corresponding linear combination of

the previous ones {R}("),
2

minimize |{R}* — Y ay {R}"| .
=1

Coefficients ay; are then used in Equation (7.22)to extrapolate forces at the current intermediate time step. Simi-
larly, the known coordinates for the current time step can be approximated from previous time steps as

{R}(k) — iaki {R}U)_
=1

Five extrapolation methods are available (FCEntrans=0-4, see below) and each differs in computational cost
along with the largest permitted outer time step, ranging from 20 fs (FCEntrans=4 with Langevin dynamics,
ntt=3) all the way up to 4 ps (FCEntrans=6 using OIN, ntt=9). The latter procedures utilize a more complex
extrapolation protocol than pictured above, involving a rotation of the outer basis coordinates and coefficient weight
normalization and minimization. For a detailed description of these methods, please refer to [291] and [286]. Note
that FCE MTS does not conserve energy and is not time reversible.

Combined impulse FCE MTS calculations (see Figure 7.1) start the simulation using impulse MTS, where
full RISM-3D solutions are computed every RISMnRESPA time steps until the requested size for the basis set,
FCEnbasis, is achieved. After a large enough basis set is collected, 3D-RISM calculations are only performed
once every FCEstride x RISMnRESPA time steps, and FCEnbase of FCEnbasis saved coordinates are used for
one of the above extrapolation procedures every RISMnRESPA intermediate time steps. The FCEnbase coordinates
represent an optimized subset of FCEnbasis, found through distance minimization with the current solute coordi-
nate. Note that large inaccuracies in the force extrapolation can ensue if FCEnbase is equal to the number of solute
degrees freedom.

7.7.2. 3D-RISM in sander

Full 3D-RISM functionality is available in sander as part of the standard install procedure. However, some
methods available in sander are not compatible with 3D-RISM, such as QM/MM simulations. At this time, only
standard molecular dynamics, minimization and trajectory post-processing with non-polarizable force fields are
supported. With the exception of multiple time step features, 3D-RISM keywords in sander are identical to those
in NAB, rism3d.snglpnt and MMPBSA.py.

3D-RISM specific command line options for sander are
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sander [standard options] -xvv xvvfile —-guv guvroot -huv huvroot

—-cuv cuvroot —-uuv uuvroot -asymp asympfile
—quv quvroot —chgdist chgdistroot
—exchem exchemroot -solvene solveneroot —-entropy entropyroot -potUV potUVroot

xvvfile input description of bulk solvent properties, required for 3D-RISM calculations. Produced by rismid.

guvroot output root name for solute-solvent 3D pair distribution function, GVV (R). This will produce one file for
each solvent atom type for each frame requested.

huvroot output root name for solute-solvent 3D total correlation function, HYY (R). This will produce one file for
each solvent atom type for each frame requested.

cuvroot output root name for solute-solvent 3D total correlation function, CYV (R). This will produce one file for
each solvent atom type for each frame requested.

uuvroot output root name for solute-solvent 3D potential energy function, UVY(R), in units of k7. This will
produce one file for each solvent atom type for each frame requested.

asympfile output root name for solute-solvent 3D long-range real-space asymptotics for C and H. This will
produce one file for each of C and H for each frame requested and does not include the solvent site charge.
Multiply the distribution by the solvent site charge to obtain the long-range asymptotics for that site.

quvroot output root name for solute-solvent 3D charge density distribution [e/A]. This will produce one file that
combines contributions from all solvent atom types for each frame requested.

chgdistroot output root name for solute-solvent 3D charge distribution [e]. This will produce one file that com-
bines contributions from all solvent atom types for each frame requested.

exchemroot output root name for 3D excess chemical potential distribution files.
solveneroot output root name for 3D solvation energy distribution files.
entropyroot output root name for 3D solvation entropy distribution files.

potUVroot output root name for 3D solute-solvent potential energy distribution files.

Generated output files can be large and numerous. For each type of correlation, a separate file is produced for each
solvent atom type. The frequency that files are produced is controlled by the ntwrism parameter. Every time step
that output is produced, a new set of files is written with the time step number in the file name. For example, a
molecular dynamics calculation using an SPC/E water model with ntwrism=2 and ~guv guv on the command line
will produce two files on time step ten: guv.0.10.dx and guv.H1.10.dx.

7.7.2.1. Keywords

With the exception of irism, which is found in the &cntrl name list, all 3D-RISM options are specified in the
&rism name list.

irism [0] Use 3D-RISM. Found in &cntrl name list.

=0 Off.
=1 On.
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Closure Approximation

closure [KH] Comma separate list of closure approximations. If more than one closure is provided, the 3D-
RISM solver will use the closures in order to obtain a solution for the last closure in the list when no
previous solutions are available. The solution for the last closure in the list is used for all output.

= KH Kovalenko-Hirata (KH).
= HNC Hyper-netted chain equation (HNC).

99

=PSEn Partial series expansion of order-n (PSE-n), where “n” is a positive integer.

Solvation Free Energy Corrections

gfCorrection [0] Compute the Gaussian fluctuation excess chemical potential functional (see §7.1.2).
=0 Off.
=1 On.

pcpluscorrection [0] Compute the PC+/3D-RISM excess chemical potential functional (see §7.2.4).
=0 Off.
=1 On.

uccoeff [0,0,0,0] Compute the UC excess chemical potential functional with the provided coefficients (see
§7.2.4). a and b are the coefficients for the original UC functional, though using the closure excess
chemical potential functional. al and bl are optional and provide temperature dependence to the
correction (UCT in [275]).

Long-range asymptotics Long-range asymptotics are used to analytically account for solvent distribution be-
yond the solvent box. Long-range asymptotics are always used when calculating a solution but can be omitted for
the subsequent thermodynamic calculations, though it is not recommended.

asympcorr [T] Use long-range asymptotic corrections for thermodynamic calculations.
=T Use the long-range corrections.

= F Do not use long-range corrections.

treeDCF [1] Use direct sum or the treecode approximation to calculate the direct correlation function long-
range asymptotic correction.

0 Use direct sum.

1 Use treecode approximation.

treeTCF [1] Use direct sum or the treecode approximation to calculate the total correlation function long-
range asymptotic correction.

0 Use direct sum.

1 Use treecode approximation.

treeCoulomb [0] Use direct sum or the treecode approximation to calculate the Coulomb potential energy.

0 Use direct sum.

1 Use treecode approximation.

treeDCFMAC [0.1] Treecode multipole acceptance criterion for the direct correlation function long-range asymp-
totic correction.
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treeTCFMAC [0.1] Treecode multipole acceptance criterion for the total correlation function long-range asymptotic
correction.

treeCoulombMAC [0.1] Treecode multipole acceptance criterion for the Coulomb potential energy.

treeDCFOrder [2] Treecode Taylor series order for the direct correlation function long-range asymptotic correc-
tion.

treeTCFOrder [2] Treecode Taylor series order for the total correlation function long-range asymptotic correc-
tion. Note that the Taylor expansion used does not converge exactly to the TCF long-range asymp-
totic correction, so a very high order will not necessarily increase accuracy.

treeCoulombOrder [2] Treecode Taylor series order for the Coulomb potential energy.

treeDCFNO [500] Maximum number of grid points contained within the treecode leaf clusters for the direct
correlation function long-range asymptotic correction. This sets the depth of the hierarchical octtree.

treeTCFNO [500] Maximum number of grid points contained within the treecode leaf clusters for the total cor-
relation function long-range asymptotic correction. This sets the depth of the hierarchical octtree.

treeCoulombN0 [500] Maximum number of grid points contained within the treecode leaf clusters for the Coulomb
potential energy. This sets the depth of the hierarchical octtree.

Solvation Box The non-periodic solvation box super-cell can be defined as variable or fixed in size. When a
variable box size is used, the box size will be adjusted to maintain a minimum buffer distance between the atoms
of the solute and the box boundary. This has the advantage of maintaining the smallest possible box size while
adapting to changes of solute shape and orientation. Alternatively, the box size can be specified at run-time. This
box size will be used for the duration of the sander calculation.

Solvent box dimensions have a strong effect on the numerical precision of 3D-RISM. See Subsection 7.2.3 for
recommendation on selecting an appropriate box size and resolution.

solvcut [obuffer] Sets Lennard-Jones cutoff distance for periodic calculations. If ’-1” or no value is specified
then the buffer distance is used.
Variable Box Size

buffer [14] Minimum distance in A between the solute and the edge of the solvent box. See §7.2.3 for details
on how this affects numerical accuracy and how this interacts with 1§Tolerance, and tolerance.

< 0 Use fixed box size (ng3 and solvbox).

>= 0 Buffer distance.

grdspc [0.5,0.5,0.5] Linear grid spacing in A.

Fixed Box Size
ng3 [] Sets the number of grid points for a fixed size solvation box. This is only used if buffer< 0.

nx,ny,nz Points for x, y and z dimensions.

solvbox [] Sets the size in A of the fixed size solvation box. This is only used if buffer< 0. See §7.2.3
for details on how this affects numerical accuracy and how this interacts with 1jTolerance, and

tolerance.

1x,1y, 1z Box length in x, y and z dimensions.
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Solution Convergence

tolerance

[1e-5] A list of maximum residual values for solution convergence. When used in combination with a
list of closures it is possible to define different tolerances for each of the closures. This can be useful
for difficult to converge calculations (see Subsection 7.4.1 for details). For the sake of efficiency, it
is best to use as high a tolerance as possible for all but the last closure. For minimization a tolerance
of le-11 or lower is recommended. See §7.2.3 for details on how this affects numerical accuracy and
how this interacts with 1jTolerance, buffer, and solvbox. Three formats of list are possible.

one tolerance All closures but the last use a tolerance of 1. The last tolerance in the list is used
by the last closure. In practice this, is the most efficient.

two tolerances All closures but the last use the first tolerance in the list. The last tolerance in the
list is used by the last closure.

n tolerances Tolerances from the list are assigned to the closure list in order.

1jTolerance [-1] Determines the Lennard-Jones cutoff distance based on the desired accuracy of the calculation.

See §7.2.3 for details on how this affects numerical accuracy and how this interacts with tolerance,
buffer,andsolvbox

asympKSpaceTolerance [-1]Determines the reciprocal space long range asymptotics cutoff distance based on the

mdiis_del

desired accuracy of the calculation. See §7.2.3 for details on how this affects numerical accuracy.
Possible values are

<0 asympKSpaceTolerance=tolerance/10,
0 no cutoff, and
>0 given value determines the maximum error in the reciprocal-space long range asymp-

totics calculations.

[0.7] “Step size” in MDIIS.

mdiis_nvec [5] Number of vectors used by the MDIIS method. Higher values for this parameter can greatly

increase memory requirements but may also accelerate convergence.

mdiis_restart [10]If the current residual is mdiis_restart times larger than the smallest residual in memory,

then the MDIIS procedure is restarted using the lowest residual solution stored in memory. Increasing
this number can sometimes help convergence.

mdiis_method [2] Specify implementation of the MDIIS routine.

maxstep

=0 Original. For small systems (e.g. < 64> grid points) this implementation may be faster than the
BLAS optimized version.

=1 BLAS optimized.
=2 BLAS and memory optimized.

[10000] Maximum number of iterations allowed to converge on a solution.nrespa

npropagate [5] Number of previous solutions propagated forward to create an initial guess for this solute atom
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configuration.

=0 Do not use any previous solutions

=1..5 Values greater than O but less than 4 or 5 will use less system memory but may introduce
artifacts to the solution (e.g., energy drift).
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Minimization and Molecular Dynamics

centering [1] Controls how the solute is centered/re-centered in the solvent box.
= -4 Center-of-geometry with grid-point rounding. Center on first step only.
= -3 Center-of-mass with grid-point rounding. Center on first step only.
=-2 Center-of-geometry. Center on first step only.
=-1 Center-of-mass. Center on first step only.
=0 No centering. Dangerous.
=1 Center-of-mass. Center on every step. Recommended for molecular dynamics.
=2 Center-of-geometry. Center on every step. Recommended for minimization.
= 3 Center-of-mass with grid-point rounding.
=4 Center-of-geometry with grid-point rounding.
zerofrc [1] Redistribute solvent forces across the solute such that the net solvation force on the solute is zero.

=0 Unmodified forces.

=1 Zero net force.

Trajectory Post-Processing

apply rism_force [1] Calculate and use solvation forces from 3D-RISM. Not calculating these forces can save
computation time and is useful for trajectory post-processing.

=0 Do not calculate forces.

=1 Calculate forces.

Multiple Time Steps Multiple time step features are only available in sander.

rismnrespa [l] rismnrespa x dt =RISM RESPA multiple time step. 8 fs is the maximum time step if using
optimized-isokinetic integrator (ntt=9), and 5 fs using Langevin dynamics (ntt=3). “1” corresponds
to no multiple time stepping.

fcestride [0] fcestride X rismnrespa x dt = FCE multiple time step, also called outer time step, i.e., full
3D-RISM solutions are performed every fcestride X rismnrespa steps. In between full solutions
extrapolated force impulses are applied every rismnrespa steps. “1” corresponds to no multiple
time stepping.
=0 No FCE multiple time stepping.
=1 Invokes the FCE code but yields the same trajectories as 0.
>=1 Invoke FCE with 3D-RISM solutions every fcestride X rismnrespa steps.

fcenbasis [20] Number of previous full solutions to store, fcenbase of these are used for the force extrapola-
tion. If FCE is not desired this can be set to 1 to reduce memory usage.

fcenbase  [20] The number of previous solutions to use for the force extrapolation. This is a subset of fcenbasis
and must be <= fcenbasis. If fcenbase < fcenbasis, then an optimized subset of fcenbasis is
found through minimization of the square distances with the current coordinate - the fcenbase clos-
est solutions are chosen. Options for this selection can be found in the commands that follow.

fcesort [0] Sort the fcenbase basis vectors for the extrapolation according to increasing distance from the
current coordinate. May decrease roundoff errors.

=0 No sorting is performed (default).

131



7. Reference Interaction Site Model

fcecrd

fceweigh

fceenormsw

fcetrans

132

=1 Sorting is performed.

[0] The coordinates used for the FCE method.
=0 The absolute x, y, z position of each neighbor atom (with translations due to centering).

=1 For predicting the forces on atom i, use the distance of each neighbor atom as the “coordinate”.
This has one third the number of coordinates to use in the prediction. Also, directional infor-
mation is lost.

=2 For predicting the forces on atom i, use the X, y, z position of each neighbor atom with atom i as
the origin. Recommended.

[0] Use weighted coordinates for the force extrapolation. Works with fcetrans = [1], [2], or [3].
=0 No weighting of the coordinates is performed (default).

=1 Weighting of basis coordinates in the extrapolation. Expensive but more precise.

[0] Balancing minimization of the squared norm of the basis expansion coefficients from least
squares fitting. Specifies the magnitude of the parameter £> of an additional constraint added to
the least squares fitting problem that balances the equations and resulting coefficients, improving the
quality and stability of the force extrapolation. Used only if fcetrans=2.

=0 No weight minimization is performed (default).

> 0 Minimization is performed with specified balancing parameter fceenormsw. This parameter
should in general be small as the squared norm is being minimized, and should be optimized to
the value that produces the most accurate results from simulation.

[0] The method of transformation of the outer basis coordinates and the method of finding expansion
coefficients in the least squares minimization problem. It can significantly affect the permitted size
of the outer time step. Transformations involve a non-Eckhart rotation of all fcenbasis coordinates.
In the least squares minimization problem, for the QR decomposition method, normalization is used
if fcenbase > solute degrees of freedom.

=0 (Default) No coordinate transformation of the outer basis coordinates. Fast but not precise and
should only be invoked if using small outer time steps (up to 200fs). Method of QR decompo-
sition is used for finding expansion coefficients from least squares minimization.

=1 Transformation of basis coordinates with respect to the first (most recent) basis coordinate, from
these the fcenbase subset is selected by minimum distance from current (also rotated) coor-
dinate. QR decomposition is used for the least squares minimization. Permits large outer time
steps on the order of several picoseconds. Fastest with regard to [2] and [3].

=2 ASEFE extrapolation: like [1], transformation of basis coordinates with respect to first basis
point, but normal equations method is utilized instead of QR, with additional squared norm
minimization, specified by fceenormsw. An extra precision and stability is gained with small,
positive values of fcernormsw. Most advanced method in Amber 15. This represents the ASFE
extrapolation scheme as laid out in [291].

=3 (place holder, same as 2 above)

=4 Basic force extrapolation - no coordinate transformation, weighting, selecting, and sorting. Only
small outer time steps, on the order of tens of fs, are permitted. This is the method as imple-
mented in Amber 11.

=5 GSFE extrapolation 1: Individual transformation and selecting with respect to the current co-
ordinate of each atom using a neighbouring scheme complemented by the e-minimization and
ifreq-scheme (see fceifreq below) as well as all other developed techniques. It is recommended
for large macromolecules of greater than 10 A in size and can be used with very large outer
steps (up to order of several picoseconds). See [292]for detailed explaination. This represents
the one of the two new GSFE extrapolation schemes (Generalized Solvent Force-coordinate
Extrapolation) as presented in [292].
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=6 GSFE extrapolation 2: Individual transformation and selecting with respect to the post coordi-
nate of each atom using a neighbouring scheme compemented by the e-minimization and the
full ifreg-support. It is recommended for large macromolecules and can be used with huge
outer steps (up to order of several picoseconds). It appears to be better than the above case
fecetrans=5 (partial ifreq-support version) because it can be exploited with larger number (up
to N~100-200) of basic points providing a higher accuracy (with nearly the same computa-
tional efforts as the fcetrans=5-version at N~30), but may require more memory. Note that at
any values of fceifreq, both the approaches have the same scheme for building the index mask
which maps the extended set to the best subset and differ in the way of constructing the trans-
formation matrix. At fceifreq=1, these two approaches are equivalent. This is the second GSFE
scheme presented in [292] and [286] and represents the most advanced 3D-RISM solvent force
extrapolation scheme available in AMBER to date.

Extended to basic mapping list updating frequency used in the GSFE FCE extrapolation schemes
above. If fceifreq=1 then fcetrans=6 is equivalent to fcetrans=5. See [292]for detailed explaination.
Default value is 1.

Net force correction flag for GSFE force extrapolation (fcetrans=5 and fcetrans=6). If fcentfrcor >
0, a correction factor is subtracted from the extrapolated forces. See [292]for in depth explaination.
Default is 0.

[0] Indicates that solvent density grid should be written to file every ntwrism iterations.
=0 No files written.

>=1 Output every ntwrism time steps.

molReconstruction [0] For any thermodynamic distributions requested, also out the molecular reconstruction

volfmt

verbose

(see section 7.1.5).

[‘'DX’] Format of volumetric data files. May be 'dx’ for DX files or 'xyzv’ for XYZV format. See the
AmberTools manual for more information.

[0] Indicates level of diagnostic detail about the calculation written to the log file.

=0 No output.

=1 Print the number of iterations used to converge.

=2 Print details for each iteration and information about what FCE is doing every progress itera-
tions.

write_thermo [1] Print solvation thermodynamics in addition to standard sander output. The format is the same

as that found in NAB and rism3d.snglpnt.

polarDecomp [0] Decomposes solvation free energy into polar and non-polar components. Note that this typically

requires 80% more computation time.

=0 No polar/non-polar decomposition.

=1 Polar/non-polar decomposition.

entropicDecomp [0] Decomposes solvation free energy into energy and entropy components. Also performs

progress

temperature derivatives of other calculated quantities. Note that this typically requires 80% more
computation time and requires a .xvv file version 1.000 or higher (see §7.1.3 and 7.3).

=0 No entropic decomposition.

=1 Entropic decomposition.

[1] Display progress of the 3D-RISM solution every kshow iterations. O indicates this information
will not be displayed. Must be used with verbose > 1.

133



7. Reference Interaction Site Model

7.7.2.2. Example
Molecular Dynamics (imin=0)

molecular dynamics with 3D-RISM and impulse MTS

&cntrl
ntx=1, ntpr=100, ntwx=1000,ntwr=10000,
nst1lim=10000,dt=0.001, INo shake or r—-RESPA
ntt=3, temp0=300, gamma_ln=20, !'Langevin dynamics
ntb=0, !Non-periodic
cut=999., !Calculate all
!solute-solute
!interactions
irism=1,
/
&rism
rismnrespa=5, !r-RESPA MTS
fcenbasis=10, fcestride=2, fcecrd=2 !FCE MTS
/
Minimization (imin=1)
Default XMIN minimization with 3D-RISM
&cntrl
imin=1, maxcyc=200,
drms=1le-3, 'RMS force. Can be as low as le-4
ntmin=3, I XMIN
ntpr=5,
ntb=0, !Non-periodic
cut=999., !Calculate all
!solute-solute interactions
irism=1
/
&rism
tolerance=le-11, !Low tolerance
solvcut=9999, INo cut-off for
!solute-solvent interactions
centering=2 !Solvation box centering
'using center-of-geometry
/

Trajectory Post-Processing (imin=5)

Trajectory post—-processing with 3D-RISM

&cntrl
ntx=1, ntpr=1, ntwx=1,
imin=5, maxcyc=1, !Single-point energy calculation
'on each frame
ntb=0, !Non-periodic
cut=9999., !Calculate all
!'solute-solute interactions
irism=1
/
&rism
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tolerance=le-4, !Saves some time compared to le-5
apply_rism force=0, !Saves some time. Forces are not used.
npropagate=1 !Saves some time and 4x8+Nbox bytes

'of memory compared to npropagate=5.

7.8. RISM File Formats

7.8.1. MDL

Solvent MoDeL (MDL) files use the prmtop specification. Each of the following sections may appear in the file
in any order. The Fortran string format specifications can be different from the recommend values below.

$VERSION VERSION_STAMP = Vxxxx.yyy DATE = mm:dd:yy hh:mm:ss
The current version of the format is 0001.000. Date should be the date and time the file is created.

$FLAG TITLE
$FORMAT (20a4)

Optional description of the file.

$FLAG POINTERS
$FORMAT (10I8)

Defines the lengths of arrays in the file.
NATOM Number of physical atoms in the model.
NSITE Number of unique solvent sites (share common Lennard-Jones parameters and partial charges).

$FLAG ATMNAME
$FORMAT (20a4)

CHARACTER (len=4) (NSITE) Four character name of each solvent site.

%$FLAG MASS
%$FORMAT (5e16.8)

REAL#8 (NSITE) Mass of each solvent site (amu).

$FLAG CHG
%$FORMAT (5e16.8)

REAL#8 (NSITE) Partial charge for each solvent site, 18.2223¢ (V/ kT/ox).

$FLAG LJEPSILON
%$FORMAT (5e16.8)

REAL«8 (NSITE) Lennard-Jones € for each solvent site (kcal/mol).

$FLAG LJSIGMA
%$FORMAT (5e16.8)

REAL*8 (NSITE) Lennard-Jones rmin/2 (sometimes called o*/2) for each solvent site (A)

12 6
Pmin,oc + T'min,y Tmin,o + F'min,y
UL = Jeqe, | | 2107 ) o R TAY
oy = 2r 2r
Note that this is related to the commonly used ¢ as

o= rmin27l/6.
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$FLAG MULTI
$FORMAT (1018)

INTEGER«*4 (NSITE) Multiplicity of each solvent site. This should sum to NATOM.

$FLAG COORD
%FORMAT (5e16.8)

REAL#8 (3*NATOM) xyz-coordinates of each atom (A).

7.8.2. XVV

The .xvv file provides all of the bulk-solvent information required for 3D-RISM. This includes information
about the solvent model, thermodynamic state and the necessary correlation functions. .xvv files use the prmtop
specification. Each of the following sections may appear in the file in any order. The format specifications can be
different from the recommend values below.

ID- and 3D-RISM now use version 1.000 of the file format. Differences include

* additional information about solvent, such as mass, number of sites per species, coordinates;
* RISM’s internal system of units is now used;

* temperature derivative, DELHVO_DT and xvv_DT, are included when available (see 7.4.1);
 and s1Gv has been replaced by rRMIN2V.

All 3D-RISM interfaces still support the original 0.001 version of the format. For detailed information on version
0.001, please see the AmberTools 1.5 manual.

$VERSION VERSION_STAMP = V0001.000 DATE = mm:dd:yy hh:mm:ss
The current version of the format is 0001.000. Date should be the date and time the file is created.

$FLAG POINTERS
$FORMAT (101I8)

Defines the lengths of arrays in the file.

NR Number of 1D grid points in " (k).
NV Number of total solvent sites.
NSP Number of solvent species (molecules).

$FLAG THERMO
%$FORMAT (1PE24.16)

REAL (8) (6) Temperature [K], dielectric constant, inverse Debye length (k) [A], compressibility [A 3], grid spac-
ing [A], charge smear [A].

$FLAG ATOM_ NAME
$FORMAT (20A4)

CHARACTER (len=4) (NSITE) Four character name of each solvent site.

$FLAG MTV
$FORMAT (10I8)

INTEGER (4) (NSITE) Multiplicity of each solvent site.
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$FLAG NVSP
$FORMAT (101I8)

INTEGER (4) (NsP) Number of sites for each solvent species.

$FLAG MASS
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Mass of each solvent site (g/mol).

$FLAG RHOV
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Number density of each solvent site (A’3).

$FLAG QV
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Partial charge for each solvent site multiplied by the square root of the Coulomb constant,

~18.2223 (VkTA).

$FLAG QSPV
$FORMAT (1P5E16.8)

REAL (8) (NSPECIES) Net charge for each solvent species multiplied by the square root of the Coulomb constant,
~18.2223 (VKTA).

$FLAG EPSV
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Lennard-Jones € for each solvent site (k7).

$FLAG RMIN2V
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Lennard-Jones 7min/2 (6*/2) for each solvent site A).

$FLAG DELHVO
$FORMAT (1P5E16.8)

REAL (8) (NSITE) Long range Coulomb correction for each solvent site (v AT A).

$FLAG DELHVO_DT
$FORMAT (1P5E16.8)

REAL (8) (NSITE) (Optional) Temperature derivative long range Coulomb correction for each solvent site (V/ kTA).

$FLAG COORD
$FORMAT (1P5E16.8)

REAL (8) (3xsum (MTV)) Coordinates of all atoms (not sites) for each solvent species with the dipole moment
aligned with the z-axis (A).

$FLAG XVV
$FORMAT (1P5E16.8)

REAL (8) (NR,NSITE,NSITE) x;;V(k). This array is stored in column major order. That is, the NR index varies
fastest.

$FLAG XVV_DT
$FORMAT (1P5E16.8)

REAL (8) (NR,NSITE,NSITE) (Optional) 87y (k). This array is stored in column major order. That is, the NR
index varies fastest.
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7.8.3. Site-site functionals

All *vv files, except .xvv (see §7.8.2), provide the separation dependence of all site-site pairings for a particular
functional and use the same format. The first four lines have a “#” in the first character column, provide a descrip-
tion of the contents of the file and indicate site-site pairs. The first data column is the site-site separation and the
remaining columns provide the value of the functional for the site-site pair at this separation.

The following example is for the direct correlation function (.cvv) for pure water. A standard, ‘two-site’ water
model is used, consisting of oxygen (O) and hydrogen (H1). This gives one solvent species with two atoms.

#RISM1D ATOM-ATOM INTERACTIONS: DIRECT CORRELATION VS. SEPARATION [A]

#S=SPECIES, A=ATOM

# SEPARATION S1A1:S1A1 S1A1:S1A2 S1A2:S1A2

# SEPARATION 0:0 H1:0 H1:H1
0.00000000E+000 —-3.81875841E+002 1.64156197E+002 -9.24562553E+001
2.50000000E-002 —-3.81695327E+002 1.64139031E+002 -9.24384608E+001

7.8.4. Thermodynamics

Thermodynamic output is divided into global, species and site properties sections. Global properties are gen-
erally not decomposable into species or site contributions (e.g., pressure). Species properties are the values for
individual molecular species, for example, the excess chemical potential of a single molecule. Some of these
properties, such as the partial molar volume, may not be decomposible into individual sites. Site properties are
contributions from individual sites. Values for sites from the same species will sum to give the total value for the
species.

The file format is white-space delimited with the first three columns giving a description, variable name and
units of the property calculated. The remaining columns contain the calculated values for the system, species or
site. Descriptive lines are indicated with a leading “#”.

The following example is for a standard, ‘two-site’ water model is used, consisting of oxygen (O) and
hydrogen (H1), at standard temperature and density. In this calculation, energy/entropy free energy
decomposition is also performed. I.e., EXCHEMsp = ESOLVsp — TSsp.

#Global properties

#Description Variable Units Value

Compressibility xi [10e-4/MPa] 4.73552130E+000

Pressure_ (Virial) Pvir [MPa] 2.51627507E+003
Excess_free_energy FE [kcal/mol] -1.03698038E+003

#Species properties

#Description Variable Units SPC

Excess_chemical potential EXCHEMsp [kcal/mol] -2.79190339E+000

Solvation_energy ESOLVsp [kcal/mol] -1.16421825E+001
-Temperaturexsolvation_entropy -TSsp [kcal/mol] 8.85027911E+000

Partial molar volume PMV [A~-3] 3.00300236E+001

#Site properties

#Description Variable Units o H1l
Excess_chemical_potential EXCHEMv [kcal/mol] -6.47897321E+000 3.68706981E+000
Solvation_energy ESOLVv [kcal/mol] -1.19565867E+001 3.14404192E-001
-Temperaturexsolvation_entropy -TSv [kcal/mol] 5.47761350E+000 3.37266562E+000

7.8.5. Total excess values

.n00 and .q00 files provide the total excess coordination number and charge about each solvent site. The total
excess of site y around site & is

nzx;()t = p'y\/o hay (l’) d}’,

while the total excess charge is
extot __ extot

day = 49yay -
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These values are presented in their respective files as ngje X ngje arrays. Any asymmetry in these arrays is due to
numerical error. .q00 files additionally provided the total excess charge from all sites.

The following example gives the total excess charge for a standard, ‘two-site’ water model is used, consisting
of oxygen (O) and hydrogen (H1), at standard temperature and density.

#Total excess coordinated charge [e] of column site about row site
o H1 Total charge

(o) 7.92607232E-001 -7.92607230E-001 1.67181313E-009

H1 7.92607231E-001 -7.92607229E-001 2.44386922E-009

7.8.6. DX volumetric data

By default, 3D correlation functions from 3D-RISM calculations use the ASCII version of the Data Explorer
(DX) file format for volumetric data on regular grids as defined in the DX user manual: http://opendx.
informatics. jax.org/docs/html/pages/usrgu068.htm#HDREDF.

Header

object 1 class gridpositions counts Nx Ny Nz

Nx INTEGER*4. Number of grid points in the x dimension.
Ny INTEGER*4. Number of grid points in the y dimension.
Nz INTEGER*4. Number of grid points in the z dimension.

origin Ox Oy Oz

0x REAL*8. x coordinate of grid origin in Cartesian space.
Oy REAL*8. y coordinate of grid origin in Cartesian space.
Oz REAL*8. z coordinate of grid origin in Cartesian space.

delta dx 0 0O
delta 0 dy O
delta 0 0 dz

dx REAL*8. Linear grid size between in the x dimension.
dy REAL*8. Linear grid size between in the y dimension.
dz REAL*8. Linear grid size between in the z dimension.

object 2 class gridconnections counts Nx Ny Nz
object 3 class array type double rank 0 items N data follows

N INTEGER*4. N = Nx X Ny X Nz.

Data

data(i, j, k) data(i, j,k+1) data(i, j, k+2)

data (i, j,k) REAL*8. Three data values per line with the last (z) index varying fastest for a total of N values.

Footer

object "Untitled" call field
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7. Reference Interaction Site Model

7.8.7. XYZV volumetric data

An alternate format for volumetric data is the simple ASCII x-y-z-value (XYZV) format. The x-, y- and
z-coordinates each grid point is written on a line followed by the value of the grid point. There is no header or

footer. For example,

-7.10789855E+000 -1.12570084E+001 -1.61284113E+001 1.35771922E-006
—-2.10789855E+000 -1.12570084E+001 -1.61284113E+001 -5.32279347E-006
2.89210145E+000 -1.12570084E+001 -1.61284113E+001 -1.58802759E-005
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8. Empirical Valence Bond

8.1. Introduction

Chemical reactivity can be formulated within the empirical valence bond (EVB) model[293, 294], whereby
the reactive surface is defined as the lowest adiabatic surface obtained by diagonalization of the potential energy
matrix in the representation of non-reactive diabatic states. These diabatic states can be described by a force field
approach, such as Amber, or by a prescription incorporating information from ab initio calculations. The coupling
elements in the matrix embody all the physics needed for describing transitions between the diabatic states.

As an example, the intramolecular proton transfer reaction in malonaldehyde (Figure 8.1) can be described by a
two-state EVB matrix

Vii Viz
V= 8.1
[ Vai Va2 } ©.1)

where valence bond state 1 represents the reactant state (RS) with the proton H9 bonded to 08 and valence bond
state 2 represents the product state (PS) with the proton bonded to 07. The matrix elements V| and V,, are
simply the energies of the reactant and product systems. The off-diagonal elements of this symmetric matrix, i.e.
Vi2 = V31, couple these diabatic states.

Amber provides several options for computing the Vi, resonance integrals. In its simplest form, Vi, is set to
a constant value which provides an EVB surface that reproduces experimental or ab initio barrier heights. More
flexibility can be introduced into V> by employing an exponential or Gaussian function of the coordinates. It has
recently been shown [295, 296] that a linear combination of distributed Gaussian functions is the most accurate
and flexible form for Vj>. With a set of distributed Gaussians, V], can be fit to high-level electronic structure data
using the following form,

5 NDim
Via@) =Y Y Bixg(a,qx.i,j,0k) (8.2)
K 2720
Vis(q) = [Vii(q) = V(q)] Va2 (q) — V(q)] (8.3)
1 2 1 2
2(9,9k,0,0,0x) = 1+§aqu*qz<| exp fiaqu*qK\ (8.4)
9 9
8 o/H o’ $o H\o 7
(L i L
, 0NN . LN N .
|’ ! |’
H H
2 2
RS PS

Figure 8.1.: Intramolecular proton transfer in malonaldehyde.

141



8. Empirical Valence Bond

. 1
2(q,9x,i,0,ax) = (9 — qk ) exp [2(11(|q - QKZ} (8.5)

. 1
8(9,9k, i, j,0x) = (4—4k); (4 — gk) jexp {2aKqQK|2] (8.6)

where g(q,qk,1, j, 0 ) are s-, p-, and d-type Gaussians at a number of points, qg, on the potential energy surface,
NDim is the total number of internal coordinates, V is the ab initio energy and B is a vector of coefficients. It
is important to note that a nonstandard s-type Gaussian is employed to precondition the resulting set of linear
equations that is passed to a GMRES[297] (aka DIIS[298, 299]) solver. For a more exhaustive discussion of the
DG EVB method please see reference [296]. Additionally, the EVB facility in Amber can perform MD or energy
optimization on the EVB ground-state surface and biased sampling along a predefined reaction coordinate (RC).
Nuclear quantization based on the Feynman path integral formalism [300-302] is also possible.

8.2. General usage description

The EVB facility is built on top of the multisander infrastructure in Amber. (Section 19.11) As such, the user
will need to build the parallel version of sander in order to utilize the EVB feature. Information for each EVB
diabatic state is obtained from separate (simultaneous) instances of sander. The energies and forces of all the states
are communicated via MPI to the master node, which is responsible for computing the EVB energy and forces and
broadcasting these to the other nodes for the next MD step.

The required input files are (1) an EVB multisander group file containing per line all the command line options
for each sander job, (2) the mdin, coordinate, and parmtop files specified in the group file, and (3) the EVB input
files. At the top level, an EVB calculation is invoked as follows:

mpirun -np <# procs> sander.MPI -ng <# groups> —groupfile <EVB group file>

The contents of the EVB group file is similar to that for a conventional multisander execution, with the addition
of a command line flag -evbin for specifying the name of the EVB input file. Below is an example of an EVB
group file:

# Malonaldehyde RS: H9 bonded to 08
-0 -i mdin -p mr.top -c¢ mr.crd -o mr.out -r mr.rst —-evbin input.mr
# Malonaldehyde PS: H9 bonded to 07
-0 -i mdin -p mp.top —-¢c mr.crd —-o mp.out -r mp.rst -—-evbin input.mp

Each line corresponds to a diabatic state, and comments are preceded by a # symbol in the first column of a line.
Now, it is important to notice in the above example that the starting configurations for both sander jobs are the
same, although the topology files are different. This constraint guarantees that the system starts in a physically
meaningful part of configuration space. Furthermore, it is critical that the atom numbers (delineating the atom
locations in the coordinate and parmtop files) are identical among the EVB diabatic states. In Figure 8.1, for
example, the atom numbers of the RS and PS malonaldehydes are identical. The only additional flag in the &cntrl
namelist of the mdin file is ievb, which has the following values

ievb Flag to run EVB
=0 No effect (default)
=1 Enable EVB. The value of imin specifies if the sander calculation is a molecular dy-

namics (imin=0) or an energy minimization (imin=1). The variable evb_dyn in the
&evb namelist of the EVB input file refines this choice to specify if the calculation
type is on the EVB ground-state surface, on a mapping potential, or on a biased poten-
tial.

The argument of the command line flag -evbin provides the name of the EVB input file. Corresponding to the
above group file example, the inputs for EVB state 1 are provided in the file input.mr and those for EVB state 2
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are provided in input.mp. For the case of constant coupling between the EVB states, the file input.mr may look
like the following:

# Malonaldehyde RS: proton (H9) bound to 08

&evb nevb = 2, nbias = 1, nmorse =1, nmodvdw = 1, ntw_evb = 50,
xch_type = "constant",

evb_dyn = "egap_umb",

dia_shift (1)%st = 1, dia_shift (1)%nrg _offset = 0.0,

dia_shift (2)%st = 2, dia_shift (2)%nrg_offset = 0.0,

xch_cnst (1) %ist = 1, xch_cnst(1)%jst = 2,

xch_cnst (1) $xcnst = 12.5,

egap_umb (1) %ist = 1, egap_umb(l)%jst = 2,

egap_umb (1) %k = 0.005, egap_umb(l)%ezero = 0.0,

morsify(1l)%iatom = 8, morsify(l)%jatom = 9, morsify(1l)%D = 356.570,
morsify(l)%a = 1.046, morsify(1l)%r0 = 1.000,

modvdw (1) $iatom = 9, modvdw(1l)%jatom = 7,

/

and the file input.mp may appear as follows:

# Malonaldehyde PS: proton (H9) bound to 07

&evb nevb = 2, nbias = 1, nmorse =1, nmodvdw = 1, ntw_evb = 50,
xch_type = "constant",

evb_dyn = "egap_umb",

dia_shift(1l)%st = 1, dia_shift(l)%nrg_offset = 0.0,

dia_shift (2)%st = 2, dia_shift (2)%nrg _offset = 0.0,

xch_cnst (1) %ist = 1, xch_cnst(1)%jst = 2,

xch_cnst (1) $xcnst = 12.5,

egap_umb (1) %ist = 1, egap_umb(1l)%jst = 2,

egap_umb (1) %k = 0.005, egap_umb(l)%ezero = 0.0,

morsify(1l)%iatom = 7, morsify(l)%jatom = 9, morsify(1l)%D = 356.570,
morsify(l)%a = 1.046, morsify(1l)%r0 = 1.000,

modvdw (1) $iatom = 9, modvdw(l)%jatom = 8,

/

The above EVB files specify that the system is described by a two-state model, the coupling between the two-states
is a constant, and the dynamics is umbrella sampling along an energy gap RC. Since the reactant and product states
are identical by symmetry, no adjustments of the relative energies of the diabatic states are performed. The constant
value coupling between the two states is parameterized such that the EVB barrier reproduces the ab initio barrier of
~ 3 kcal/mol (RMP2/cc-pVTZ level). Lastly, the standard Amber harmonic bond interactions involving the proton
with the donor and acceptor oxygens are replaced by Morse functions and certain van der Waals interactions are
excluded.

This parameterization of the EVB surface to provide observables that match either results from high-level quan-
tum chemistry calculations or experimental measurements is the trickiest aspect of the EVB model. However, after
the EVB surface has been calibrated, the user has access to reactive chemical dynamics simulation timescales and
lengthscales which would be otherwise inaccessible using conventional ab initio MD approaches. The distributed
Gaussian EVB framework provides a systematic procedure for computing Vj, from ab initio data.

Now, let us suppose that the constant coupling prescription does not provide the detailed features needed to
describe the reaction pathway. Furthermore, we find that the coupling as a function of the coordinates can be
described adequately (from comparison to ab initio data) using a Gaussian functional form. How should one
modify the above EVB input files to obtain a more accurate reactive surface? We need to change the xch_type
variable from “‘constant” to ‘“gauss’ as well as replace the variable xch_cnst by the variable xch_gauss(:), which
contains the parameters for the Gaussian functional form. Of course, these parameters need to be optimized to
provide the more accurate surface. The modifications to the EVB input files look something like the following,
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= "
— 7

xch_type = "gauss",

— T — T

xch_gauss (1) %$ist = 1, xch_gauss(l)%jst = 2,
xch_gauss (1) $iatom = 8, xch_gauss(l)%jatom = 7,
xch_gauss(l)%a = 11.0, xch_gauss(1l)%sigma = 0.0447,

xch_gauss (1) %rx0 = 2.3,

where the cross-through lines have been replaced by those below them. Access to the exponential functional form
or the distributed Gaussian approximation to Vi, entails similar changes to the input files. Please see $AMBER-
HOME/test/evb for examples.

8.3. Biased sampling

When a reactive event is described by an intrinsic high free energy barrier, molecular dynamics on the EVB
ground-state surface will not adequately sample the important transition state region. Under these conditions,
chemical reactions are rare events and sampling on the EVB surface effectively reduces to sampling on a diabatic
surface. One framework for enhancing the sampling of rare events is through modification of the system Hamilto-
nian with the addition of biasing potentials. The EVB facility in Amber offers several options for biased sampling:
(1) Ariel Warshel’s mapping potential approach[293] (2) Dave Case’s umbrella sampling on an energy gap RC (3)
umbrella sampling on a distance RC and (4) umbrella sampling on a difference of distances RC.

In the mapping potential framework, the system Hamiltonian (and hence, the molecular dynamics) is described
by the modified potential

Vo, =(1 —A)Vii-f—lfo 8.7)

where Vj; is the EVB matrix element for the initial state and Vyy is the EVB matrix element for the final state. As
the value of the mapping potential parameter A changes from 0 to 1, the system evolves from the initial state to the
final state. As an example, for A = 0.50, the system Hamiltonian is an equal linear combination of the initial and
final states and molecular dynamics sample the region in the vicinity of the transition state. Each mapping potential
V, samples only a portion of the reaction coordinate. In practice, a series of mapping potentials are used to bias
the sampling across the entire range of the RC. The average distribution of the RC for each mapping potential is
then unbiased and the set of unbiased distributions are combined to give the potential of mean force (PMF) on the
EVB ground-state surface. Figure 8.2 shows a PMF for the malonaldehyde intramolecular proton transfer reaction
as obtained from 9 mapping potential simulations with A ranging from 0.10 to 0.90 at 0.10 intervals.
In the umbrella sampling framework, the system Hamiltonian is described by the modified potential

thi?sed(‘l) = VelO(q)+Vu(rrrl1)b(q)

L n)]?
= Van(@)+ 5k [RC(q)—RCO (8.8)

where q is the set of system coordinates, k is the harmonic force constant parameter, and Vlfgl)b is an umbrella

potential that is added to the original system potential V;jo (obtained from diagonalization of the EVB matrix) to
bias the sampling towards a particular value of the reaction coordinate RC(()") . The superscript (n) denotes that a
series of biased simulations, each enhancing the sampling of a particular window of the RC, is required to map out

the entire PMF. The number of umbrella sampling windows as well as the choice of values for the force constant
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Potential of Mean Force [kcal/mol]

. 1 . 1 . . . .
-75 -50 -25 0 25 50 75
Collective Reaction Coordinate [kcal/mol]

Figure 8.2.: Potential of mean force along an energy gap RC for the intramolecular proton transfer in malonalde-
hyde as obtained from a series of mapping potential simulations.

evb_dyn dependency
“evb_map” = emap(:)
“egap_umb” = egap_umb(:)
“bond_umb” = bond_umb(:)
“dbonds_umb” = dbonds_umb(:)
“qi_bond_pmf” | = bond_umb(:)
“qi_bond_dyn” = bond_umb(:)
“qi_dbonds_pmf” | = dbonds_umb(:)
“qi_dbonds_dyn” | = dbonds_umb(:)

Table 8.2.: Derived variable types for EVB.

parameter and the RC equilibrium position will depend ultimately on the nature of the free energy landscape of the
system in question.

Results from the biased samplings then can be unbiased and combined using the weighted histogram analysis
method (WHAM)[303-305] to generate the PMF describing chemistry on the physically relevant EVB ground-
state potential energy surface, V. Figure 8.3 depicts the PMF for the malonaldehyde intramolecular proton
transfer that is obtained from 13 umbrella sampling simulations with RC(()”) spanning the range -60 kcal/mol to +60
kcal/mol at 10 kcal/mol intervals. The supporting program to generate the PMF from a set of mapping potential or
from a set of umbrella sampling simulations can be obtained from the Amber website, http://ambermd.org.

Biased sampling is accessed through the nbias and evb_dyn variables in the EVB input file. The variable nbias
specifies the number of biasing potentials to include in the system Hamiltonian. Mapping potential dynamics is
invoked using the assignment evb_dyn=*‘‘evb_map”. Biased sampling via umbrella potentials is invoked with the
assignment evb_dyn=*“egap_umb’’, evb_dyn=‘“bond_umb’’ or evb_dyn=*‘dbonds_umb”. Associated with each
choice of biased sampling approach is a derived type variable that provides the required parameters, as shown in
Table 8.2.
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Potential of Mean Force [kcal/mol]

=75 -50 -25 0 25 50 75

Collective Reaction Coordinate [kcal/mol]

Figure 8.3.: Potential of mean force for the intramolecular proton transfer in malonaldehyde as obtained from a
series of umbrella sampling simulations along an energy gap RC. The distributions of the RC from all
the windows are combined using the WHAM procedure.
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9. sgm: Semi-empirical quantum chemistry

AmberTools contains its own quantum chemistry program, called sgm. This is code extracted from the QM/MM
portions of sander, but is limited to “pure QM” calculations. A principal current use is as a replacement for
MOPAC for deriving AM1-bcc charges, but the code is much more general than that. Presently, it is limited to
single point calculations and energy minimizations (geometry optimizations) for closed-shell systems. It supports
a wide variety of semi-empirical Hamiltonians, including many recent ones. An external electric field generated
by a set of point charges can be included for single point calculations. Our plan is to add capabilities to subsequent
versions. The major contributors are as follows:

* The original semi-empirical support was written by Ross Walker, Mike Crowley, and Dave Case,[306] based
on public-domain MOPAC codes of J.J.P. Stewart.

* DFTB2 (SCC-DFTB) support was written by Gustavo Seabra, Ross Walker and Adrian Roitberg,[307] and
is based on earlier work of Marcus Elstner.[308, 309]

* Support for diagonal third-order corrections to SCC-DFTB was written by Gustavo Seabra and Josh Mcclel-
lan.

* DFTB3 was added by Andreas Goetz.
* Various SCF convergence schemes were added by Tim Giese and Darrin York.

* The PM6 Hamiltonian was added by Andreas Goetz and dispersion and hydrogen bond corrections were
added by Andreas Goetz and Kyoyeon Park.

* The extension for MNDO type Hamiltonians to support d orbitals was written by Tai-Sung Lee, Darrin York
and Andreas Goetz.

¢ The charge-dependent exchange-dispersion corrections of vdW interactions[310] was contributed by Tai-
Sung Lee, Tim Giese, and Darrin York.

* Support for reading user-defined parameters for NDDO methods was added by Tai-Sung Lee and Darrin
York.

The DFTB/DFTB2 code was originally based on the DFT/DYLAX code by Marcus Elstner et al., but has since
been extensively re-written and optimized. The DFTB3 implementation is an extension of this code.

9.1. Available Hamiltonians

Available MNDO-type semi-empirical Hamiltonians are PM3,[311] AM1,[312] RM1,[313] MNDO,[314]
PDDG/PM3,[315] PDDG/MNDO,[315] PM3CARB1,[316], PM3-MAIS[317, 318], MNDO/d[319-321], AM1/d
(Mg from AM1/d[322] and H, O, and P from AM1/d-PhoT[323]) and PM6[324].

Also available is the density functional theory-based tight-binding (DFTB) Hamiltonian[307, 325, 326] and its
self-consistent-charge version with Taylor expansion up to second order (SCC-DFTB or DFTB2)[308] and third-
order (DFTB3)[327]. If you use the mio-1-1 parameters for DFTB2, you can add an empirical correction for
dispersion effects[328] and calculate CM3 charges[329] (both only for elements H, C, N, O, S, P). Diagonal third-
order corrections are available for DFTB2[330] with mio-1-1 parameters but it is recommended to perform full
DFTB3 simulations instead. Neither dispersion corrections nor halogen corrections are implemented for DFTB3.

The elements supported by each QM method are:
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« MNDO: H, Li, Be, B, C,N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, Cd, Sn, I, Hg, Pb

* MNDO/d: H, Li, Be, B, C, N, O, F, Na, Mg, Al Si, P, S, CI, Zn, Ge, Br, Sn, I, Hg, Pb

*« AMI: H,C,N,O,F, AL Si, P, S, Cl, Zn, Ge, Br, I, Hg

* AM1/d: H, C, N, O, F, Mg, Al Si, P, S, Cl, Zn, Ge, Br, I, Hg

« PM3: H, Be, C, N, O, F, Mg, AL, Si, P, S, Cl, Zn, Ga, Ge, As, Se, Br, Cd, In, Sn, Sb, Te, I, Hg, T, Pb, Bi
« PDDG/PM3: H,C,N, O, F, Si, P, S, CI, Br, I

« PDDG/MNDO: H,C, N, O, F, Cl, Br, I

* RMI: H,C,N,O, P, S,F, C], Br, I

* PM3CARBI: H,C, O

« PM3-MAIS: H, O, C1

* PM6: H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La,
Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi

* DFTB/DFTB2/DFTB3: (Any atoms for which parameters are available from www.dftb.org)

The PM6 implementation has not been extensively tested for all available elements. Please check your results
carefully, possibly by comparison to other codes that implement PM6, if transition metal elements are present.
SCF convergence may be more difficult to achieve for transition metal elements with partially filled valence shells.

If the PM6 Hamiltonian is used in a QM/MM simulation with sander using electrostatic embedding (see Section
10) or if an electric field of external point charges is used, then the electrostatic interactions between QM and MM
atoms are modeled using the MNDO type core repulsion function for interactions between QM and MM atom:s.
Parameters for the exponents & of the QM atoms are taken from PM3 (a default value of five is used for the
exponents ¢ of the MM atoms as is the case for MNDO, AM1 and PM3). Since PM3 does not have parameters for
all elements that are supported by PM6, the missing exponents were defined in an ad hoc manner (see the source
code in SAMBERHOME/AmberToosl/src/sqm/qm2_parameters.F90, variable alp_pm6). The magnitude of the
coefficients « is probably not critical for the accuracy of QM/MM calculations but this should be tested on a case
by case basis. This does not affect QM calculations with sgm.

9.1.1. DFTB parameter files

In order to use DFTB2 or DFTB3 (gm_theory=DFTB2 or DFTB3) a set of integral parameter files is required.
The mio-1-1 parameter files for DFTB2 and 30b-3-1 parameter files are distributed with Amber under a Creative
Commons Attribution-ShareAlike 4.0 International License, see http://creativecommons.org/licenses/by-sa/4.0/.
The parameters were obtained from the website www.dftb.org on February 22, 2017. You may want to check if
there are any updates to the parameters. If you perform DFTB simulations, in addition to Amber please cite the
publications describing the QM/MM and DFTB implementations as well as following references for the DFTB
parameters:

When using DFTB2 with mio-1-1 and following elements:

* O, N, C, H: M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G.
Seifert, Phys. Rev. B 58 (1998) 7260.

¢ S: T. A. Niehaus, M. Elstner, Th. Fruanheim, S. Suhai, J. Molec. Struct. (THEOCHEM) 541 (2001) 185.
e P: M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 7 (2011) 931-948.

When using DFTB3 with 30b-3-1 and following elements:
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O, N, C, H: M. Gaus, A. Goez, M. Elstner, J. Chem. Theory Comput. 9 (2013) 338-354.

P, S: M. Gaus, X. Lu, M. Elstner, Q. Cui, J. Chem. Theory Comput. 10 (2014) 1518-1537.
* Mg, Zn: X. Lu, M. Gaus, M. Elstner, Q. Cui, J. Phys. Chem. B 119 (2015) 1062-1082.

* Na, F K, Ca, CI, Br, I: M. Kubillus, T. Kubar, M. Gaus, J. Rezac, M. Esltner, J. Chem. Theory Comput. 11
(2015) 332-342.

Additional parameter files can be obtained from the website www.dftb.org. By default it is assumed that DFTB2
uses the mio-1-1 parameter set and DFTB3 the 30b-3-1 parameter set and that the corresponding files with exten-
sion .skf reside in the directories SAMBERHOME/dat/slko/mio-1-1 and SAMBERHOME/dat/slko/30ob-3-1. If you
want to use other parameter sets and/or put the parameter files in other directories then you have to specify the
location in the input file (keyword dftb_slko_path, see section 9.3 for details).

Following parameter files for use with DFTB2 and the mio-1-1 parameter set are also distributed with Amber-
Tools: Dispersion parameters for H, C, N, O, P and S are available in the file SAMBERHOME/dat/slko/mio-1-
1/DISPERSION.INP_ONCHSP, CM3 parameters for the same atoms are in the file SAMBERHOME/dat/slko/mio-
1-1/CM3_PARAMETERS.DAT file, and two parametrizations for diagonal third-order SCC-DFTB terms (SCC-
DFTB-PA and SCC-DFTB-PR) are in the files DFTB_3RD_ORDER_PA.DAT and DFTB_3RD_ORDER_PR.DAT,
both located in the same directory.

9.2. Dispersion and hydrogen bond correction

An empirical dispersion and hydrogen bonding correction is implemented for the MNDO type Hamiltonians
AMI1 and PM6([331]. The empirical dispersion correction follows the formalism for DFT-D[332] and consists of a
physically sound ~° term that is damped at short distances to avoid the short-range repulsion which can be written
as

Egis = _56Zfdamp(rijzR?j)C6,ijri;6; 0.1
ij

where 7;; is the distance between two atoms i and j, R?j is the equilibrium van der Waals (vdW) separation
derived from the atomic vdW radii, Cg ;; the dispersion coefficient, and s¢ a general scaling factor. The damping

function is given as
-1
l’,'/'
l+exp| —a 5 —1 . 9.2)
sRRij

Bondi vdW radii[333] are used and for a pair of unlike atoms we have

fdamp(riij?j) =

03, po3
o _ Ki TR 93)
t 02 02" :
R +Kj;
For the Cg¢ coefficients the following equation is used,
C2,C2  NepriNepr )3
Cﬁ,ij —9 ( 6,ii-6,jjtVeffii eff-,]) (94)

(Co,iNegs )1 + (Co jjNepr )P

where the Slater-Kirkwood effective number of electrons N,y ; and the Cg coefficients can easily be found in the
literature[332].

An empirical hydrogen bonding correction[331] that is transferable among different semiempirical Hamiltonians
and has been parametrized for use with the dispersion correction described above is also available. This correction
does not make the assumption of a specific acceptor/hydrogen/donor binding situation. Instead it considers the
hydrogen bond as a charge-independent atom- atom term between two atoms capable of serving as an acceptor
or donor (for example, O, N) and weights this by a function that accounts for the steric arrangement of the two
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atoms and the favorable positioning of a hydrogen atom inbetween. A damping function corrects for long- and
short-range behavior,

C
Ex_pona = #fgeomfdamm 9.5)
Y
Facom = €03(84)? cos(a)* cos(wa)? cos(9p)* cos(Pr)? cos(Wa)? foond, 9.6)
1
Toond = b o 600 /12— 1))’ S
1 1
Jaamp = (1 +exp[—100(rap/2.4 — 1)]) (1 1 +exp[—10(rap/7.0— l)]) ’ ©-8)
Cap = %. 9.9

Here, Ca and Cg are the atomic hydrogen bonding correction parameters and the (torsion) angles in the function
fgeom are defined similarly to an earlier hydrogen bond correction[334].

The hydrogen bond correction can be used both for single point energy calculations or geometry optimizations
with SQM and for molecular dynamics simulations with SANDER. However, we do not recommend the use for
molecular dynamics at present since cutoffs needed to be implemented for the calculation of fy.n, of equation
(9.6). This and some other conditional evaluations give rise to discontinuities in the potential energy surface and
thus make this method unattractive for MD simulations.

9.3. Usage

The sqm program uses the following simple command line:
sgqm [-O] -i <input-file> -o <output-file>

mdin is the default input-file name, and mdout is the default output-file name.As in other Amber programs, the
“-O” flag allows the program to over-write the output file.
An example input file for running a simple minimization is shown here:

Run semi-empirical minimization

&qmmm
gm_theory='AM1', gmcharge=0,
/
6 cG -1.9590 0.1020 0.7950
6 CcD1 -1.2490 0.6020 -0.3030
6 CD2 -2.0710 0.8650 1.9630
6 CEl -0.6460 1.8630 -0.2340
6 cé -1.4720 2.1290 2.0310
6 Cz -0.7590 2.6270 0.9340
1 HE2 -1.5580 2.7190 2.9310
16 s15 -2.7820 0.3650 3.0600
1 H19 -3.5410 0.9790 3.2740
1 H29 -0.7870 -0.0430 -0.9380
1 H30 0.3730 2.0450 -0.7840
1 H31 -0.0920 3.5780 0.7810
1 H32 -2.3790 -0.9160 0.9010

The &gmmm namelist contains variables that allow you to control the options used. Following that is one line
per atom, giving the atomic number, atom name, and Cartesian coordinates (free format). The variables in the
&gmmm namelist are these:

am_theory Level of theory to use for the QM region of the simulation (Hamiltonian). Default is to use the
semi-empirical Hamiltonian PM3. Options are AM1, RM1, MNDO, PM3-PDDG, MNDO-PDDG,
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PM3-CARBI1, MNDO/d (same as MNDOD), AM1/d (same as AM1D), PM6, DFTB2 (same as
DFTB), and DFTB3. The dispersion correction can be switched on for AM1 and PM6 by choosing
AMI1-D* and PM6-D, respectively. The dispersion and hydrogen bond correction will be applied for
AMI1-DH+ and PM6-DH+.

dftb_slko_path Path to the DFTB Slater-Koster parameter files. Defaults to ’'$SAMBERHOME/dat/slko/mio-

1-1/° for DFTB2 and ’$AMBERHOME/dat/slko/30b-3-1/" for DFTB3. You can specify a different
directory here, which is assumed to be a subdirectory of ’SAMBERHOME/dat/slko/” unless you
specify an absolute path.

dftb_disper Flag turning on (1) or off (0) the use of a dispersion correction to the DFTB2 energy (only for

mio-1-1 parameters). Requires gm_theory=DFTB2. It is assumed that you have the file DISPER-
SION.INP_ONCHSP in your SAMBERHOME/dat/slko/mio-1-1 directory. This file must be down-
loaded from the website www.dftb.org, as described in the beginning of this chapter. Only available
for elements H, C, O, N, P, S. (Default = 0)

dftb_3rd_order Third order diagonal corrections to DFTB2 with mio-1-1 parameters. Default=" (the empty

dftb_chg

dftb_telec

string which means no third order correction).

=’'PA’ Use the SCC-DFTB-PA parametrization, which was developed for proton affinities. The
parameters will be read from the SAMBERHOME/dat/slko/DFTB_3RD_ORDER_PA.DAT file.

="PR’ Use the SCC-DFTB-PR parametrization, which was developed for phosphate hy-
drolysis reactions. The parameters will be read from the SAMBERHOME/dat/s-
lko/DFTB_3RD_ORDER_PR.DAT file.

=’READ’ Parameters will be read from the mdin file, in a separate “dftb_3rd_order” namelist, which
must have the same format as the files above.

='filename’ Parameters will be read from the file specified by filename, in the “dftb_3rd_order”
namelist, which must have the same format as the files above.

Flag to choose the type of charges to report when doing a DFTB calculation.

=0 (default) - Print Mulliken charges.

=2 Print CM3 charges. Only available for DFTB2 with mio-1-1 parameters for elements H, C, N,
O,SandP.

Electronic temperature, in K, used to accelerate SCC convergence in DFTB calculations. The elec-
tronic temperature affects the Fermi distribution promoting some HOMO/LUMO mixing, which can
accelerate the convergence in difficult cases. In most cases, a low felec (around 100K) is enough.
Should be used only when necessary, and the results checked carefully. Default: 0.0K

dftb_maxiter Maximum number of SCC iterations before resetting Broyden in DFTB calculations. (default: 70

amcharge

spin

amamdx

)

Charge on the QM system in electron units (must be an integer). (Default = 0)

Multiplicity of the QM system. Currently only singlet calculations are possible and so the default
value of 1 is the only available option. Note that this option is ignored by DFTB/SCC-DFTB, which
allows only ground state calculations. In this case, the spin state will be calculated from the number
of electrons and orbital occupancy.

Flag for whether to use analytical or numerical derivatives of the semiempirical electron repulsion
integrals. The default (and recommended) option is to use ANALYTICAL QM-QM derivatives.

=1 (default) - Use analytical derivatives for QM-QM forces.

=2 Use numerical derivatives for QM-QM forces. Note: the numerical derivative code has not been
optimised as aggressively as the analytical code and as such is significantly slower. Numerical
derivatives are intended mainly for testing purposes.
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verbosity Controls the verbosity of QM/MM related output. Warning: Values of 2 or higher will produce a lot

of output.

=0 (default) - only minimal information is printed - Initial QM geometry and link atom positions as
well as the SCF energy at every ntpr steps.

=1 Print SCF energy at every step to many more significant figures than usual. Also print the
number of SCF cycles needed on each step.

=2 As 1 and also print info about memory reallocations, number of pairs per QM atom, QM core -
QM core energy, QM core - MM atom energy, and total energy.

=3 As 2 and also print SCF convergence information at every step.

=4 As 3 and also print forces on the QM atoms due to the SCF calculation and the coordinates of
the link atoms at every step.

=5 As 4 and also print all of the info in kJ/mol as well as kcal/mol.

tight_p_conv Controls the tightness of the convergence criteria on the density matrix in the SCF.

scfconv

=0 (default) - loose convergence on the density matrix (or Mulliken charges, in case of a SCC-
DFTB calculation). SCF will converge if the energy is converged to within scfconv and the
largest change in the density matrix is within 0.05%sqrt(scfconv).

=1 Tight convergence on density(or Mulliken charges, in case of a SCC-DFTB calculation). Use
same convergence (scfconv) for both energy and density (charges) in SCF. Note: in the SCC-
DFTB case, this option can lead to instabilities.

Controls the convergence criteria for the SCF calculation, in kcal/mol. In order to conserve energy
in a dynamics simulation with no thermostat it is often necessary to use a convergence criterion of
1.0d-9 or tighter. Note, the tighter the convergence the longer the calculation will take. Values tighter
than 1.0d-11 are not recommended as these can lead to oscillations in the SCF, due to limitations in
machine precision, that can lead to convergence failures. Default is 1.0d-8 kcal/mol. Minimum
usable value is 1.0d-14.

pseudo_diag Controls the use of ’fast’ pseudo diagonalisations in the SCF routine. By default the code will

attempt to do pseudo diagonalisations whenever possible. However, if you experience convergence
problems then turning this option off may help. Not available for DFTB/SCC-DFTB.

=0 Always do full diagonalisation.

=1 Do pseudo diagonalisations when possible (default).

pseudo_diag_criteria Float controlling criteria used to determine if a pseudo diagonalisation can be done. If

the difference in the largest density matrix element between two SCF iterations is less than this crite-
ria then a pseudo diagonalisation can be done. This is really a tuning parameter designed for expert
use only. Most users should have no cause to adjust this parameter. (Not applicable to DFTB/SCC-
DFTB calculations.) Default = 0.05

diag_routine Controls which diagonalization routine will be used during the SCF procedure. This is an ad-
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vanced option to fine-tune performance which has negligible effect on energies (and generally little
effect on geometries in the case of SQM energy minimizations). The speed of each diagonalizer is
a function of the number and type of QM atoms as well as the LAPACK library that the program
was linked to. As such there is not always an obvious choice to obtain the best performance. The
simplest option is to set diag_routine = 0 in which case the program will test each diagonalizer in
turn, including the pseudo diagonalizer, and select the one that gives optimum performance. As of
AmberTools 15 diag_routine = 0 is the default for both SQM and QMMM in Sander. Not available
for DFTB/SCC-DFTB.

=0 Automatically select the fastest routine (default).
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=1 Use internal diagonalization routine.
=2 Use lapack dspev.

=3 Use lapack dspevd.

=4 Use lapack dspevx.

=5 Use lapack dsyev.

=6 Use lapack dsyevd.

=7 Use lapack dsyevr.

printcharges =0 Don’t print any info about QM atom charges to the output file (default)

=1 Print Mulliken QM atom charges to output file every ntpr steps.

print_eigenvalues Controls printing of MO eigenvalues.

axd

=0 Do not print MO eigenvalues

=1 Print MO eigenvalues at the end of a single point calculation or geometry optimization (default)
=2 Print MO eigenvalues at the end of every SCF cycle (only NDDO methods, not DFTB)

=3 Print MO eigenvalues during each step of the SCF cycle (only NDDO methods, not DFTB)

Flag to turn on (=.true.) or off (=.false., default) the charge-dependent exchange-dispersion correc-
tions of vdW interactions[310].

parameter_file = 'PARAM.FILE’ Read user-defined parameters from the file ’'PARAM.FILE’. The first three

space-separated entries (case insensitive) of each line will be interpreted as a user-modified
parameter in the sequence of parameter name, element name, and value. For example, a line
contains “USS C1-111.6139480D0 “ will cause the USS parameter of the Cl element changed
to -111.6139480. A line beginning with “END” will stop the reading. This function currently
only works for MNDO, AM1, PM3, MNDO/d, and AM1/d. Also, when new nuclear core-core
parameters (FN, in PM3, AMI1, and AM1/d) are re-defined, the number of FNN parameter sets
(NUM_FN) also needs to be defined. For example, if FNn3 (n = 1, 2, or 3) is defined, then
NUM_FN needs to be set to 3 or 4.

peptide_corr =0 Don’t apply MM correction to peptide linkages. (default)

itrmax

maxcyc

ntpr

grms_tol

= 1 Apply a MM correction to peptide linkages. This correction is of the form Ey.p = Ecr +
Beype (irype) sin® ¢, where ¢ is the dihedral angle of the H-N-C-O linkage and /;y,, is a con-
stant dependent on the Hamiltonian used. (Recommended, except for DFTB/SCC-DFTB.)

Integer specifying the maximum number of SCF iterations to perform before assuming that conver-
gence has failed. Default is 1000. Typically higher values will not do much good since if the SCF
hasn’t converged after 1000 steps it is unlikely to. If the convergence criteria have not been met
after itrmax steps the SCF will stop and the minimisation will proceed with the gradient at itrmax.
Hence if you have a system which does not converge well you can set itrmax smaller so less time is
wasted before assuming the system won’t converge. In this way you may be able to get out of a bad
geometry quite quickly. Once in a better geometry SCF convergence should improve.

Maximum number of minimization cycles to allow, using the xmin minimizer (see Section 39.4) with
the TNCG method. Default is 9999. Single point calculations can be done with maxcyc = 0.

Print the progress of the minimization every ntpr steps; default is 10.

Terminate minimization when the gradient falls below this value; default is 0.02
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ndiis_attempts Controls the number of iterations that DIIS (direct inversion of the iterative subspace) extrap-

olations will be attempted. Not available for DFTB/SCC-DFTB. The SCF does not even begin to
exhaust its attempts at using DIIS extrapolations until the end of iteration 100. Therefore, for exam-
ple, if ndiis_attempts=50, then DIIS extrapolations would be performed at end of iterations 100 to
150. The purpose of not performing DIIS extrapolations before iteration 100 is because the existing
code base performs quite well for most molecules; however, if convergence is not met after 100
iterations, then it is presumed that further iterations will not yield SCF convergence without doing
something different, i.e., DIIS. Thus, the implementation of DIIS in SQM is a mechanism to try and
force SCF convergence for molecules that are otherwise difficult to converge. Default 0. Maximum
1000. Minimum 0. Note that DIIS will automatically turn itself on for 100 attempts at the end of
iteration 800 even if you did not explicitly set ndiis_attempts to a nonzero value. This is done as a
final effort to achieve convergence.

ndiis_matrices Controls the number of matrices used in the DIIS extrapolation. Including only one matrix is

vshift

errconv

gmmm_int
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the same as not performing an extrapolation. Including an excessive number of matrices may require
a large amount of memory. Not available for DFTB/SCC-DFTB. Default 6. Minimum 1. Maximum
20.

Controls level shifting (only NDDO methods, not DFTB). Virtual orbitals can be shifted up by vshift
(in eV) to improve SCF convergence in cases with small HOMO/LUMO gap. Default 0.0 (no level
shift).

SCF tolerance on the maximum absolute value of the error matrix, i.e., the commutator of the Fock
matrix with the density matrix. The value has units of hartree. The default value of errconv is suf-
ficiently large to effectively remove this tolerance from the SCF convergence criteria. Not available
for DFTB/SCC-DFTB. Default 1.d-1. Minimum 1.d-16. Maximum 1.dO.

When running QM calculations in the sqm program, an electric field of external point charges can
be added. In this way, the electrostatic effect outside of the QM region can be modeled, making the
calculation a simplified QM/MM calculation without QM/MM vdW’s contribution. Like QM/MM
calculations (see Section 10), the method to couple QM and MM electrostatic interactions for exter-
nal charges and semiempirical Hamiltonians can be specified via the gmmm_int namelist variable.

The current implementation limits use of external charges to only single point energy calculations.
To run such a calculation, an additional field, which begins with #EXCHARGES and ends with
#END, is required to specify the external point charges in the input. Each external point charge
must include atomic number, atom name, X, Y, Z coordinates and the charge in units of the electron
charge. An example input looks like:

single point energy calculation (adenine), with external charges (thymine)

&qmmm
gm_theory = 'PM3’,

gmcharge = 0,

maxcyc = 0,

O NP o Nd OB RPN

QO zZ2momaoz0mimZ

gmmm_int = 1,

.0716177 -0.0765366 1.9391390
.0586915 -0.0423765 2.0039181
.6443796 -0.0347395 2.7619159
.6739638 -0.0357766 0.7424316

.9350155 -0.0279801 -0.3788916
.5490760 0.0012569 -1.5808009
.8794435 0.0050260 -2.4315709
.8531510 0.0258031 -1.8409596
.5646109 0.0195446 -0.7059872

w NhNORr OoORr KF O R



6 C 3.0747955 -0
7 N 4.0885824 -0
6 C 5.1829921 0
1 H 6.1882591 0
7 N 4.9294871 0
1 H 5.6035368 0

#EXCHARGESwill be

6 C -4.7106131 0
1 H -4.4267056 0
1 H -4.4439282 -0.
1 H -5.7883971 0.
6 C -3.9917387 0.
6 C -4.6136833 0.
1 H -5.6909220 0.
7 N -3.9211729 -0.
1 H -4.4017172 -0.
6 C -2.5395897 -0.
8 O -1.9416783 -0.
7 N -1.9256484 -0.
1 H -0.8838255 -0.
6 C -2.5361367 0.
8 O -1.8674730 0.
#END

.0094480
.0054429
.0253971
.0375542
.0412404
.0648755

.0413373
.9186178
8302573
0505530
0219348
0169051
0269347
0009646
0036078
0149474
0291878
0110593
0216168
0074651
0112093

H O K O

.5994562
.5289786
.7872176
.1738824
.5567274
.3036811

.1738637
.7530256
.7695655
.0247280
.8663338
.3336520
.4227183
.5163659
.4004924
.5962357
.6573783
.3638948
.3784269
.8766724
.9120833

.03140
.06002
.05964
.03694
.25383
.03789
.16330
.47122
.35466
.80253
.63850
.58423
.35404
.71625
.60609

9.3. Usage
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Sander supports the option of describing part of the system quantum mechanically in an approach known as a
hybrid (or coupled potential) QM/MM simulation. Semi-empirical neglect of diatomic overlap (NDDO)-type and
density functional tight binding (DFTB) Hamiltonians are supported natively by sander and the basic documen-
tation (e.g. what Hamiltonians are implemented, description of the input parameters) can be found in Chapter 9.
Here we limit our description to those features that are unique to the QM/MM interface implemented in sander.
More advanced Hamiltonians based on ab initio wave function theory (WFT) and density functional theory (DFT)
are supported via an interface to external QM software packages the use of which is described in section 10.2.

The built-in semi-empirical QM/MM support was written by Ross Walker and Mike Crowley, [306] based
originally on public-domain MOPAC codes of J.J.P. Stewart. The QM/MM generalized Born implementation uses
the model described by Pellegrini and Field[335] while regular QM/MM Ewald support is based on the work
of Nam et al.[336] with QM/MM PME support based on the work of Walker er al.[306]. SCC-DFTB support
was written by Gustavo Seabra, Ross Walker and Adrian Roitberg,[307] and is based on earlier work of Marcus
Elstner.[308, 309] Support for third-order SCC-DFTB was written by Gustavo Seabra and Josh McClellan.

10.1. Built-in semiempirical NDDO methods and SCC-DFTB

When running a QM/MM simulation in sander the system is partitioned into two regions, a QM region consisting
of the atoms defined by either the gmmask or igmatoms keyword, and a MM region consisting of all the atoms that
are not part of the QM region. For a typical protein simulation in explicit solvent the number of MM atoms will
be much greater than the number of QM atoms. Either region can contain zero atoms, giving either a pure QM
simulation or a standard classical simulation. For periodic simulations, the quantum region must be compact, so
that the extent (or diameter) of the QM region (in any direction) plus twice the QM/MM cutoff must be less than
the box size. Hence, you can define an "active site" to be the QM region, but in most cases could not ask that
all cysteine residues (for example) be quantum objects. The restrictions are looser for non-periodic (gas-phase
or generalized Born) simulations, but the codes are written and tested for the case of a single, compact quantum
region.

The partitioned system is characterized by an effective Hamiltonian which operates on the system’s wavefunc-
tion ¥, which is dependent on the position of the MM and QM nuclei, to yield the system energy E.fs:

H,f ¥ (xe, XM Xmm) = Eepr(xom, Xmm )P (Xe, Xom, Xmm) (10.1)

The effective Hamiltonian consists of three components - one for the QM region, one for the MM region and a
term that describes the interaction of the QM and MM regions, implying that likewise the energy of the system can
be divided into three components. If the total energy of the system is re-written as the expectation value of H, s
then the MM term can be removed from the integral since it is independent of the position of the electrons:

Epy = (Y|Hom + Hoyjnm|¥) + Enm (10.2)

In the QM/MM implementation in sander, Ejpy is calculated classically from the MM atom positions using
the Amber or CHARMM force field equation and parameters, whereas Hpy is evaluated using the chosen QM
method.

The interaction term Hgpyy/yp is more complicated. By default, sander uses an electrostatic embedding scheme
(also referred to as additive scheme) in which the interaction of the MM point charges with the electrons of the
QM system as well as the interaction between the MM point charges and the QM nuclei (atomic cores for semi-
empirical methods) is explicitly taken into account. In other words, the MM region polarizes the QM electron
density. For the case where there are no covalent bonds between the atoms of the QM and MM regions the
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interaction Hamiltonian is thus the sum of an electrostatic term and a Lennard-Jones (VDW) term and can be
written as

HQM/MM = ZZ Omheiectron (xe;xMM) - Qquhcore (XQvaMM) + <r11t - rf)] (10.3)
q m qm qm
where the subscripts e, m and q refer to the electrons, the MM nuclei and the QM nuclei respectively. Here Q,, is
the charge on MM atom m, Z, is the core charge (nucleus minus core electrons) on QM atom g, 7, is the distance
between atoms g and m, and A and B are Lennard-Jones interaction parameters. For systems that have covalent
bonds between the QM and MM regions, the situation is more complicated, as discussed later.
A more approximate form of the interaction term Hgy/p is referred to as mechanical embedding (or subtractive
QM/MM scheme). In this case the interactions between the QM and the MM region are obtained within the same
classical approximation that is used for the MM region, that is

Hommmn = LY. [Q;"Qq T (ﬁ—’j)] (10.4)
qg m qm gm gm
where Q,, is the classical MM point charge assigned to an atom in the QM region. Mechanical embedding is useful
to impose steric constraints on the embedded QM system, however, the electron density is not polarized by the
MM environment. An additional complication of this approach is that the point charges that are assigned to the
atoms in the QM region have to represent the electrostatic potential of the QM region during the whole course of
a QM/MM simulation.
If one evaluates the expectation values in Eq. 10.2 over a single determinant built from molecular orbitals

9 =Y cij; (10.5)
J

where the ¢;; are molecular orbital coefficients and the ); are atomic basis functions, the total energy depends upon
the ¢;; and on the positions xsy and xg of the atoms. The energy is obtained by setting dE, s /dc;; to zero which
leads to a self-consistent (SCF) procedure to determine the c¢;;, (with a modified Fock matrix that contains the
electric field arising from the MM charges in the case of electrostatic embedding). Once the energy is known, the
forces on the atoms can be obtained by taking the derivative of the energy expression with respect to the positions
of the QM and MM atoms.

The main subtlety that arises in the case of electrostatic embedding is that, for a periodic system, there are
formally an infinite number of QM/MM interactions; even for a non-periodic system, the (finite) number of such
interactions may be prohibitively large. These problems are addressed in a manner analogous to that used for pure
MM systems: a PME approach is used for periodic systems, and a (large) cutoff may be invoked for non-periodic
systems. Some details are discussed below.

10.1.1. The QM/MM interface and link atoms

The sections above dealt with situations where there are no covalent bonds between the QM and MM regions. In
many protein simulations, however, it is necessary to have the QM/MM boundary cut covalent bonds, and a number
of additional approximations have to be made. There are a variety of approaches to this problem, including hybrid
orbitals, capping potentials, and explicit link atoms. The last option is the method available in sander.

There are a number of ways to implement a link atom approach that deal with the way the link atom is positioned,
the way the forces on the link atom are propagated, and the way non-bonding interactions around the link atom are
treated. Each time an energy or gradient calculation is to be done, the link atom coordinates are re-generated from
the current coordinates of the QM and MM atoms making up the QM-MM covalent pair. The link atom is placed
along the bond vector joining the QM and MM atom, at a distance d; gy from the QM atom. By default d; g is
set to the equilibrium distance of a methyl C-H atom pair (1.09 A) but this can be set in the input file. The default
link atom type is hydrogen, but this can also be specified as an input.

Since the link atom position is a function of the coordinates of the "real" atoms, it does not introduce any new
degrees of freedom into the system. The chain rule is used to re-write forces on the link atom itself in terms
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of forces on the two real atoms that define its position. This is analogous to the way in which "extra points" or
"lone-pairs" are handled in MM force fields.

The remaining details of how the QM-MM boundary is treated are as follows: for the interactions surrounding
the link atom, the MM bond term between the QM and MM atoms is calculated classically using the classical
force field parameters, as are any angle or dihedral terms that include at least one MM atom. The Lennard-Jones
interactions between QM-MM atom pairs are calculated in the same way as described in the section above with
exclusion of 1-2 and 1-3 interactions and scaling of 1-4 interactions. What remains is to specify the electrostatic
interactions between QM and MM atoms around the region of the link atom.

A number of different schemes have been proposed for handling link-atom electrostatics. Many of these have
been tested or calibrated on (small) gas-phase systems, but such testing can neglect some considerations that are
very important for more extended, condensed-phase simulations. In choosing our scheme, we wanted to ensure
that the total charge of the system is rigorously conserved (at the correct value) during an MD simulation. Further,
we strove to have the Mulliken charge on the link atom (and the polarity of its bond to the nearest QM atom)
adopt reasonable values and to exhibit only small fluctuations during MD simulations. Link atoms interact with
the MM field in exactly the same way as regular QM atoms. That is they interact with the electrostatic field due
to all the MM atoms that are within the cutoff, with the exception of the MM link pair atoms (MM atoms that are
bound directly to QM atoms). VDW interactions are not calculated for link atoms. These are calculated between
all real QM atoms and all MM atoms, including the MM link pair atoms. For Generalized Born simulations the
effective Born radii for the link atoms are calculated using the intrinsic radii for the MM link pair atoms that they
are replacing.

In the case of electrostatic embedding the atoms that make up the QM region (including the MM link pair
atom) have their charges from the prmtop file essentially replaced with Mulliken charges. Hence it is important to
consider the issue of charge conservation. The QM region (including the link atoms) by definition must have an
integer charge. This is defined by the &qmmm namelist variable gmcharge. If the MM atoms (including the MM
link pair atoms) that make up the QM region have prmtop charges that sum to the value of gmcharge then there is
no problem. If not, there are two options for dealing with this charge, defined by the namelist variable adjust_q. A
value of 1 will distribute the difference in charge equally between the nearest nlink MM atoms to the MM link pair
atoms. A value of 2 will distribute this charge equally over all of the MM atoms in the simulation (excluding MM
link pair atoms).

10.1.2. A reformulated QM/MM interface for PM3

In the current version of Amber, a reformulated QM-MM core-charge potential (denoted as PM3/MM*) has
been implemented. This reformulated potential scales the interaction between a QM core and a MM charge for the
purpose of better description of the geometry and energy at the QM-MM interface:[337]

EQ%E/MM =Zaqm (sasaysmsm) |:1 + %ﬂ ' (_gffla'R“’" + Efg'Ram):| (106)
m

where Z, is the effective core charge of QM atom a, g, is the partial charge on MM atom m, s, is an s orbital
on the QM atom, s, is a notional s orbital on the MM atom, R, is the QM-MM interatomic distance, and f}'
and f3 are exponential scale factors which depend on the QM atom only. Optimal values for fi' and f3' were
determined based on the PM3 Hamiltonian, and are available for H, C, N and O atoms (so the QM region is
limited to these four atoms; but the MM region is not restricted). Application of this reformulated potential shows
improved prediction of geometry and interaction energy at the QM-MM interface for hydrogen bonded small
molecule complexes typical of biomolecular interactions, without significantly impacting the modeling of other
interaction types, such as dispersion dominant complexes.[337] In a QM/MM calculation, giving gmmm_int=3
along with gm_theory=PM3 will invoke this potential.

Based on PM3/MM*, further developments to the semi-empirical QM/MM coupling method have been intro-
duced — PM3/MMX2 (gmmm_int=4 and gm_theory=PM3) — which shares the same QM core-MM charge equation
with the PM3/MM* model. In addition, a QM parameter, P, is introduced to each type of QM atoms in order
to "fine-tune" the QM electron-MM charge interaction (Eq. 10.7). Although p,,, is a parameter for QM atom, the
subscript mm emphasizes that it is a MM-related property (eqn 3.xx). Parameters are currently available for H, C,
N, O and S QM atoms (manuscript in preparation).
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10.1.3. Generalized Born implicit solvent

The implementation of Generalized Born (GB) for QM/MM calculations is based on the method described by
Pellegrini and Field.[335] Here, the total energy is taken to be E, ¢y from Eq. 10.2 plus Eg, from Eq. 4.2. In Eg,,
charges on the QM atoms are taken to be the Mulliken charges determined from the quantum calculation; hence
these charges depend upon the molecular orbital coefficients c;; as well as the positions of the atoms.

As with conventional QM/MM simulations, one then solves for the ¢;; by setting dE,ss/dc;j = 0. This leads
to a set of SCF equations with a Fock matrix modified not only by the presence of MM atoms (as in "ordinary"
QM/MM simulations), but also modified by the presence of the GB polarization terms. Once self-consistency is
achieved, the resulting Mulliken charges can be used in the ordinary way to compute the GB contribution to the
total energy and forces on the atoms.

10.1.4. Ewald and PME

The support for long range electrostatics in QM/MM calculations using electrostatic embedding is based on a
modification of the Nam, Gao and York Ewald method for QM/MM calculations.[336] This approach works in a
similar fashion to GB in that Mulliken charges are used to represent long range interactions. Within the cutoff,
interactions between QM and MM atoms are calculated using a full multipole treatment. Outside of the cutoff the
interaction is based on pairwise point charge interactions. For semiempirical NDDO-type methods this leads to a
slight discontinuity at the QM/MM cutoff boundary and thus a small energy drift during QM/MM MD simulations
in the NVE ensemble. This energy drift can be avoided by using a switching function at the cutoff (see below).

The implementation in Ref [336] uses an Ewald sum for both QM/QM and QM/MM electrostatic interactions.
This can be expensive for large MM regions, and thus sander uses a modification of this method by Walker and
Crowley[306] that uses a PME model (rather than an Ewald sum) for QM/MM interactions. This is controlled by
the gm_pme variable discussed below.

When running QM/MM Ewald or PME simulations in sander, if QM multipoles are involved in QM-MM
interactions (NDDO methods), a discontinuity in the QM-MM electrostatic potential occurs at the cutoff distance
due to the sudden change in the potential function (the difference between Eqgs. 10.9 and 10.10) , thus resulting in
energy conservation problems in the simulation.

Eéi;%;[{/lf = —qm (.uavmsmsm) +Zaqm(5asaasmsm)(l +Scale) (10.9)
r>cutoff qm(Za _Zc,u,u)
Eguni =~ 5 (10.10)

This problem can be avoided by applying a switching function to smoothly connect the two different potentials.
The QM/MM electrostatic potential using a switching function can thus be written as:

Eom/mm = Eé;?;t;;{,,fs(’) + Eéif}%{f (1=s(r))
The switching function can be turned on or off via the &gmmm namelist variable gmmm_switch, for details see
section 10.1.6 below.

159



10. QM/MM calculations

10.1.5. Hints for running successful QM/MM calculations
Required Parameters and Prmtop Creation

QM/MM calculations without link atoms require mass, charges, van der Waals and GB radii in the prmtop
file. All bonds, angles, and dihedrals parameters involving QM atoms are neglected. In the case of electrostatic
embedding the charges are also neglected. (Note that when SHAKE is applied to the QM reg, the bonds are
constrained to the ideal MM values, even when these are part of a QM region; hence, for this case, it is important
to have correct bond parameters in the QM region.) The simplest general prescription for setting things up is to
use antechamber and LEaP to create a reference force field, since "placeholders" are required in the prmtop file
even for things that will be neglected. This also allows you to run comparison simulations between pure MM and
QM/MM simulations, which can be helpful if problems are encountered in the QM/MM calculations.

The use of antechamber to construct a pure MM reference system is even more useful when there are link atoms,
since here MM parameters for bonds, angles and dihedrals that cross the QM/MM boundary are also needed.

Choosing the QM region

There are no good universal rules here. Generally, one might want to have as large a QM region as possible,
but having more than 80-100 atoms in the QM region will lead to simulations that are very expensive. One should
also remember that for many features of conformational analysis, a good MM force field may be better than a
semiempirical or DFTB quantum description. In choosing the QM/MM boundary, it is better to cut non-polar
bonds (such as C-C single bonds) than to cut unsaturated or polar bonds. Link atoms are not placed between bonds
to hydrogen. Thus cutting across a C-H bond will NOT give you a link atom across that bond. (This is not currently
tested for in the code and so it is up to the user to avoid such a situation.) Furthermore, link atoms are restricted
to one per MM link pair atom. This is tested for during the detection of link atoms and an error is generated if
this requirement is violated. This would seem to be a sensible policy otherwise you could have two link atoms too
close together. See the comments in gm_link_atoms.f for a more in-depth discussion of this limitation.

Choice of electrostatic cutoff

The implementation of the non-bonded cut off in QM/MM simulations is slightly different than in regular MM
simulations. The cut off between MM-MM atoms is still handled in a pairwise fashion. However, for QM atoms
any MM atom that is within gmcut of ANY QM atom is included in the interaction list for all QM atoms. This
means that the value of gmcut essentially specifies a shell around the QM region rather than a spherical shell
around each individual QM atom. Ideally the cut off should be large enough that the energy as a function of the
cutoff has converged. For non-periodic, generalized Born simulations, a cutoff of 15 to 20 A seems sufficient in
some tests. (Remember that long-range electrostatic interactions are reduced by a factor of 80 from their gas-phase
counterparts, and by more if a nonzero salt concentration is used.) For periodic simulations, the cutoff only serves
to divide the interactions between "direct" and "reciprocal” parts; as with pure MM calculations, a cutoff of 8 or 9
A is sufficient here.

Parallel simulations

The built-in QM/MM implementation currently supports execution in parallel via the message passing interface
(MPI), however, the implementation is not fully parallel. At present all parts of the QM simulation are parallel
except the density matrix build and the matrix diagonalisation. For small QM systems these two operations do
not take a large percentage of time and so acceptable scaling can be seen to around 8 CPU cores (depending on
type of CPU and/or interconnect speed between compute nodes). For large QM systems the matrix diagonalisation
time will dominate and so the scaling will not be as good. In this case it may be beneficial to choose a LAPACK
diagonalization routine in combination with a threaded library such as the Intel Math Kernel Library (MKL). For
details on how to choose the diagonalization routine see Section 9.3. The number of threads to be used for the
diagonalization is set via an environment variable of the operating system (typically OMP_NUM_THREADS).
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10.1.6. General QM/MM &gmmm Namelist Variables

An example input file for running a simple QM/MM MD simulation is shown here:

&cntrl

imin=0, nstlim=10000, ! Perform MD for 10,000 steps
dt=0.002, ! 2 fs time step

ntt=1, tempi=0.1, temp0=300.0, ! Berendsen temperature control
ntb=1, ! Constant volume periodic boundaries
ntf=2, ntc=2, ! Shake hydrogen atoms

cut=8.0, ! 8 angstrom classical non-bond cut off
ifgnt=1 ! Switch on QM/MM coupled potential
/
&qmmm

gmmask=':753", ! Residue 753 should be treated using QM
gmcharge=-2, ! Charge on QM region is -2

gm_theory='PM3', ! Use the PM3 semi-empirical Hamiltonian

gmcut=8.0 ! Use 8 angstrom cut off for QM region
/

The &gmmm namelist contains variables that allow you to control the options used for a QM/MM simulation. This

namelist must

be present when running QM/MM simulations and at the very least must contain either the igmatoms

or gmmask variable which define the region to be treated quantum mechanically. If ifgnt is set to zero then the
contents of this namelist are ignored.

For the QM region definition specify one of either igmatoms or gmmask. Link atoms will be added automatically
along bonds (as defined in the prmtop file) that cross the QM/MM boundary.

igmatoms

gmmask

gmcut

am_ewald

comma-separated integer list containing the atom numbers (from the prmtop file) of the atoms to be
treated quantum mechanically.

Mask specifying the quantum atoms. E.g. :1-2, = residues 1 and 2. See mask documentation for
more info.

Specifies the size of the electrostatic cutoff in Angstroms for QM/MM electrostatic interactions. By
default this is the same as the value of cut chosen for the classical region, and the default generally
does not need to be changed. Any classical atom that is within gmcut of any QM atom is included
in the pair list. For PME calculations, this parameter just affects the division of forces between
direct and reciprocal space. Note: this option only effects the electrostatic interactions between the
QM and MM regions. Within the QM region all QM atoms see all other QM atoms regardless of
their separation. QM-MM van der Waals interactions are handled classically, using the cutoff value
specified by cut.

This option specifies how long range electrostatics for the QM region should be treated.

=0 Use a real-space cutoff for QM-QM and QM-MM long range interactions. In this situation QM
atoms do not see their images and QM-MM interactions are truncated at the cutoff. This is the
default for non-periodic simulations.

=1 (default) Use PME or an Ewald sum to calculate long range QM-QM and QM-MM electrostatic
interactions. This is the default when running QM/MM with periodic boundaries and PME.

=2 This option is similar to option 1 but instead of varying the charges on the QM images as the
central QM region changes the QM image charges are fixed at the Mulliken charges obtained
from the previous MD step. This approach offers a speed improvement over gm_ewald=1,
since the SCF typically converges in fewer steps, with only a minor loss of accuracy in the
long range electrostatics. This option has not been extensively tested, although it becomes
increasingly accurate as the box size gets larger.
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kmaxgx,y, z Specifies the maximum number of kspace vectors to use in the X, y and z dimensions respectively
when doing an Ewald sum for QM-MM and QM-QM interactions. Higher values give greater accu-
racy in the long range electrostatics but at the expense of calculation speed. The default value of 8
should be optimal for most systems.

ksgmaxq Specifies the maximum number of K squared values for the spherical cut off in reciprocal space
when doing a QM-MM Ewald sum. The default value of 100 should be optimal for most systems.

qm_pme Specifies whether a PME approach or regular Ewald approach should be used for calculating the
long range QM-QM and QM-MM electrostatic interactions.

=0 Use a regular Ewald approach for calculating QM-MM and QM-QM long range electrostatics.
Note this option is often much slower than a pme approach and typically requires very large
amounts of memory. It is recommended only for testing purposes.

=1 (default) Use a QM compatible PME approach to calculate the long range QM-MM electrostatic
energies and forces and the long range QM-QM forces. The long range QM-QM energies are
calculated using a regular Ewald approach.

gmmm_switch Specifies whether a switching function shall be used at the cutoff for long range electrostatics
(applies only to NDDO methods). The lower and higher boundaries of the switching function are
user definable, see r_switch_lo and r_switch_hi.

=0 (default). Do not use a switching function. This leads to slight discontinuities in the potential at
the cut off and thus an energy drift in NVE simulations.

=1 Use a switching function. See also variables r_switch_hi and r_switch_lo.
r_switch_hi Specifies the upper boundary of the switching function in A (see gmmm_switch). Defaults to gmcut.

r_switch_lo Specifies lower boundary of the switching function in A (see gmmm_switch). Defaults to
r_switch_hi - 2.

amgb Specifies how the QM region should be treated with generalized Born.

=2 (default) As described above, the electrostatic and "polarization" fields from the MM charges and
the exterior dielectric (respectively) are included in the Fock matrix for the QM Hamiltonian.

=3 This is intended as a debugging option and should only be used for single point calculations.
With this option the GB energy is calculated using the Mulliken charges as with option 2 above
but the fock matrix is NOT modified by the GB field. This allows one to calculate what the GB
energy would be for a given structure using the gas phase quantum charges. When combined
with a simulation using gmgb=2, this allows the strain energy from solvation to be calculated.

am_theory Level of theory to use for the QM region of the simulation. (Hamiltonian). Default is to use the
semi-empirical hamiltonian PM3. See the Section 9.3 for details.

agumm_int  Controls the way in which QM/MM interactions are handled in the direct space QMMM sum. This
controls only the electrostatic interactions. VDW interactions are always calculated classically us-
ing the standard 6-12 potential. Note: with the exception of gmmm_int=0 DFTB calculations
(qm_theory=DFTB) always use a simple mulliken charge - resp charge interaction and the value
of gmmm_int has no influence.

=0 This turns off all electrostatic interaction between QM and MM atoms in the direct space sum.
Note QM-MM VDW interactions will still be calculated classically.

=1 (default) QM-MM interactions in direct space are calculated in the same way for all of the
various semi-empirical hamiltonians. The interaction is calculated in an analogous way to
the the core-core interaction between QM atoms. The MM resp charges are included in the
one electron hamiltonian so that QMcore-MMResp and QMelectron-MMResp interactions are
calculated.

162



agmshake

10.1. Built-in semiempirical NDDO methods and SCC-DFTB

=2 This is the same as for 1 above except that when AM1, PM3 or Hamiltonians derived from these
are in use the extra Gaussian terms that are introduced in these methods to improve the core-
core repulsion term in QM-QM interactions are also included for the QM-MM interactions.
This is the equivalent to the QM-MM interaction method used in CHARMM and DYNAMO.
It tends to slightly reduce the repulsion between QM and MM atoms at small distances. For
distances above approximately 3.5 angstroms it makes almost no difference.

= 3 Using this along with gm_theory=PM3 invokes a reformulated QM core-MM charge potential
at the QM-MM interface (Eq. 10.6). Current parametrization limits the QM region to H, C, N
and O atoms only; MM region is not restricted.[337]

=4 Currently not in use.

=5 Mechanical embedding: The electrostatic interaction between QM and MM atoms is treated on
the same level as within the MM region using the classical force field point charges also for the
QM atoms. The electronic Hamiltonian does not contain the field generated by the MM region
point charges and thus the electron density is not polarized by the MM environment. Does not
work with GB. Not extensively tested in presence of link atoms.

Controls whether SHAKE is applied to QM atoms. Using SHAKE on the QM region will allow
you to use larger time steps such as 2 fs with NTC=2. If, however, you expect bonds involving
hydrogen to be broken during a simulation you should not SHAKE for the QM region. WARNING:
the SHAKE routine uses the equilibrium bond lengths as specified in the prmtop file to reset the
atom positions. Thus while bond force constants and equilibrium distances are not used in the energy
calculation for QM atoms the equilibrium bond length is still required if QM SHAKE is on.

=0 Do not shake QM H atoms.
=1 Shake QM H atoms if SHAKE is turned on (NTC>1) (default).

printdipole Controls whether the dipole moment shall be printed every ntpr steps.

writepdb

vsolv

=0 Do not print the dipole moment (default).
=1 Print the dipole moment of the QM region.
=2 Print the total dipole moment of the QM and MM region.

=0 Do not write a PDB file of the selected QM region. (default).

=1 Write a PDB file of the QM region. This option is designed to act as an aid to the user to
allow easy checking of what atoms were included in the QM region. When this option is set a
crude PDB file of the atoms in the QM region will be written on the very first step to the file
gmmm_region.pdb.

Controls whether solvent molecules shall be included into the QM region (requires settings in the
&vsolv namelist; see also section 10.3 on adaptive solvent QM/MM simulations, in particular the
namelist information in section 10.3.2.2).

=0 Do not include solvent molecules into the QM region (default).
=1 Include solvent molecules via simple solvent switching (requires &vsolv namelist).

=2 Adaptive solvent QM/MM with fixed number of solvent molecules in A and T regions (requires
&vsolv and &adgmmm namelists).

=3 Adaptive solvent QM/MM with fixed size of A and T regions (requires &vsolv and &adgmmm
namelists).

In addition to the above parameters, the following variables may be set, as described in Section 9.3:

gm_theory, dftb_disper, dftb_3rd_order , dftb_chg , dftb_telec , dftb_maxiter , gmcharge, spin, qmgmdx, ver-
bosity, tight_p_conv, scfconv, pseudo_diag, pseudo_diag_criteria, diag_routine, printcharges, qxd, parameter_file,
peptide_corr, and itrmax.
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10.1.7. Link Atom Specific QM/MM &gmmm Namelist Variables

The following options go in the &gmmm namelist and control the link atom behaviour.

Ink_dis

1nk_method

Distance in A from the QM atom to its link atom. Currently all link atoms must be placed at the
same distance. A negative value of Ink_dis specifies that the link atom should be placed directly on
top of the MM link pair atom. In this case the distance of the link atom from the QM region changes
as a function of time and the actual value of Ink_dis is ignored. Additionally this means that not all
link atoms will be placed at the same distance. Negative values of Ink_dis will work with regular
link atoms, such as hydrogen, but are really intended for use with pseudo atom / capping approaches.
Default = 1.09A.

This defines how classical valence terms that cross the QM/MM boundary are dealt with.

=1 (Default) in this case any bond, angle or dihedral that involves at least one MM atom, including
the MM link pair atom is included. This means the following (where QM = QM atom, MM =
MM atom, MML = MM link pair atom.):

Bonds = MM-MM, MM-MML, MML-QM
Angles = MM-MM-MM, MM-MM-MML, MM-MML-QM, MML-QM-QM

Dihedrals = MM-MM-MM-MM, MM-MM-MM-MML, MM-MM-MM-MML-QM, MM-
MML-QM-QM, MML-QM-QM-QM

=2 Only include valence terms that include a full MM atom, that is, count the MM link pair atom as
effectively being a QM atom. This option is designed to be used in conjunction with a pseudo
atom / capping type approach where the link atom is parameterized specifically to behave like
a uni-valent version of the MM atom it replaces. This option gives the following interactions:

Bonds = MM-MM, MM-MML
Angles = MM-MM-MM, MM-MM-MML, MM-MML-QM

Dihedrals = MM-MM-MM-MM, MM-MM-MM-MML, MM-MM-MML-QM, MM-MML-
QM-QM

1nk_atomic_no The atomic number of the link atoms. This selects what element the link atoms are to be. Default

adjust_g
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= 1 (Hydrogen). Note this must be an integer and an atomic number supported by the chosen QM
theory.

This controls how charge is conserved during a QMMM calculation involving link atoms. When the
QM region is defined the QM atoms and any MM atoms involved in link bonds have their RESP
charges zeroed. If the sum of these RESP charges does not exactly match the value of gmcharge then
the total charge of the system will not be correct.

=0 No adjustment of the charge is done.

=1 The charge correction is applied to the nearest nlink MM atoms to MM atoms that form link
pairs. Typically this will be any MM atom that is bonded to a MM link pair atom (a MM atom
that is part of a QM-MM bond). This results in the total charge of QM+QMIlink+MM equaling
the original total system charge from the prmtop file. Requires natom-nquant-nlink >= nlink
and nlink>0.

=2 (default) - This option is similar to option 1 but instead the correction is divided among all MM
atoms (except for those adjacent to link atoms). As with option 1 this ensures that the total
charge of the QM/MM system is the same as that in the prmtop file. Requires natom-nquant-
nlink >= nlink.



10.2. Interface for ab initio and DFT methods

10.1.8. Charge-dependent exchange-dispersion corrections of vdW interactions

The sgm program provides a new charge-dependent energy model consisting of van der Waals (vdW) and polar-
ization interactions between the quantum mechanical (QM) and molecular mechanical (MM) regions in a combined
QM/MM calculation. vdW interactions are commonly treated using empirical Lennard-Jones (L-J) potentials,
whose parameters are often chosen based on the QM atom type (e.g., based on hybridization or specific covalent
bonding environment). This strategy for determination of QM/MM nonbonding interactions becomes tedious to
parametrize and lacks robust transferability. Problems occur in the study of chemical reactions where the "atom
type" is a complex function of the reaction coordinate. This is particularly problematic for reactions, where atoms
or localized functional groups undergo changes in charge state and hybridization.

In sgm, this charge-dependent energy model was implemented based on a scaled overlap model for repulsive
exchange and attractive dispersion interactions that is a function of atomic charge. The model is chemically
significant since it properly correlates atomic size, softness, polarizability, and dispersion terms with minimal
one-body parameters that are functions of the atomic charge[310].

This “Charge-dependent exchange-dispersion corrections of vdW interactions” can be invoked by the
“gxd=.true.” switch in the &gmmm namelist. Note that this model currently does not have any effect on pure
quantum calculations through sgm, the qxd correction is only added to QM/MM interactions in sander. The de-
fault values of qxd parameters are set to reproduce the regular L-J interactions of typical atom types (HC for H,
C* for C, N for N, OW for O, and parameters for F and Cl are optimized[310]) when the charge dependence
parameters are zero. There are eight qxd parameters (symbols used in the reference[310] are indicated in the
parentheses): gxd_s (s), qxd_z0 (£(0)), gxd_zq (&,), gxd_d0 (o), gxd_dq (3 x B), qxd_q0 (@), qxd_qq (3 x B),
and qxd_neff (N.sr(0)). All parameters can be modified through external user-defined parameter files (see the
usage of “parameter_file’ in Section 9.3).

10.2. Interface for ab initio and DFT methods

In addition to the built-in semi-empirical methods sander also supports QM/MM simulations with ab initio wave
function theory (WFT) and density functional theory (DFT) potentials via an interface to external QM software
packages[338]. The implementation makes use of the existing QM/MM infrastructure that has been developed
earlier for the semi-empirical methods. Thus, much of AMBER’s previous QM/MM functionality such as the user-
friendly link atom approach are available and the implementation remains simple and transparent to use without
any significant additional steps in the simulation setup as compared to semi-empirical QM/MM simulations. At
present the interface supports several well-known and widely used QM software packages. Mechanical embedding
is available for

* ADF (Amsterdam Density Functional) [339, 340]
* GAMESS-US [341, 342]
¢ NWChem [343]

Mechanical and electrostatic embedding is available for

e Gaussian [344]

Orca [345]

Q-Chem[346][346]

TeraChem [347]

MRCC [348, 349]

Fireball [350]
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While ADF, Gaussian, Q-Chem and TeraChem are commercial programs, GAMESS-US, NWChem, Orca, MRCC
and Fireball are available at no cost for academic research. Fireball, which implements a density functional theory-
based tight binding approach, requires compilation of sander with special flags, see the section on Fireball below
for details. The interface has been written in a modular fashion and is easily extensible to support other QM
software packages. It is our intention to keep adding support for other software packages. If you are interested in
interfacing a specific program, please do not hesitate to contact us.

The interface was developed by Andreas Goetz (SDSC, UCSD) with help of Matthew Clark (SDSC) and support
by Ross Walker (SDSC, UCSD). Thanks are due to Christine Isborn and Todd Martinez (Stanford University) for
modifications to the TeraChem code to support this interface, to Mark Williamson (University of Cambridge) for
an initial version of the module that supports NWChem, Bence Hégely for contributing code that supports MRCC,
and Jests Mendieta and José Ortega Mateo for contributing code that supports Fireball. If you make use of this
interface, please cite the following work:

¢ A. W. Gotz, M. A. Clark, R. C. Walker, An extensible interface for QM/MM molecular dynamics simulations
with AMBER, J. Comput. Chem. 35, 95-108 (2014), DOI: 10.1002/jcc.23444

If you are using the interface with the TeraChem code, please cite in addition the following work:

e C. M. Isborn, A. W. G6tz, M. A. Clark, R. C. Walker, T. J. Martinez, Electronic Absorption Spectra from
MM and ab initio QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of
Photoactive Yellow Protein, J. Chem. Theory Comput. 8, 5092-5106 (2012), DOI: 10.1021/ct3006826

If you are using the interface with the MRCC code, please cite in addition the following work:

* B. Hégely, F. Bogdr, G. G. Ferenczy, M. Killay, A QM/MM program for calculations with frozen localized
orbitals based on the Huzinaga equation, Theoret. Chem. Acc. 134, 132 (2015), DOI: 10.1007/978-3-662-
49825-5_16

If you are using the interface with the Fireball code, please cite in addition the following work:

* J. I. Mendieta-Moreno, R. C. Walker, J. P. Lewis, P. Gomez-Puertas, J. Mendieta, J. Ortega, FIREBALL/AM-
BER: An efficient local-orbital DFT QM/MM method for biomolecular systems, J. Chem. Theory Comput.
10, 2185-2193 (2014), DOI: 10.1021/ct500033w

Access to QM methods not available within Amber is also possible via the Amber interface to the PUPIL simulation
framework. For details, see refs. 351, 352. In what follows we will describe the new interface that is native to
sander.

10.2.1. Theory

As described in section 10.1, the Hamiltonian of a system that is partitioned into a QM region that is treated
with WFT and a classical region that is treated with MM consists of three components and the energy associated
with this Hamiltonian is obtained as the corresponding expectation value

E = (Y| Hom + Ao mm|¥) + Eni- (10.11)

A QM/MM calculation therefore requires not only to choose the WFT used in the QM region and the MM model
used for the MM region, but in addition also the form of the QM/MM Hamiltonian which describes the interaction
between the quantum and the classical region. The most simple approach is to neglect any electronic coupling
between the QM and the MM system and include only the classical non-bonded van der Waals (vdW) and electro-
static interactions between the QM and the MM atoms. This is useful to impose steric constraints on the embedded
QM system and commonly referred to as mechanical embedding. In most cases, however, it is better to allow for
an explicit polarization of the QM system due to the presence of the point charges on the MM atoms. This is
referred to as electronic embedding and the resulting interaction energy becomes
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This QM/MM energy expression also holds for DFT and the terms represent, in order, the electrostatic interaction
between the QM electron density and the MM point charges, the electrostatic interation between the QM point
charge nuclei and the MM point charges, and the van der Waals repulsion between the QM and MM atoms.

The forces acting on an atom A in a QM/MM calculation are given in terms of derivatives of the total energy
expression (10.11) with respect to the Cartesian coordinates of the atom,

dr +

electronic O
EQIM;MM = Z /p(r)|r
AeEMM
(10.12)

+ )Y e
AeQM,BEMM

Fa = —VaEqu — VaEqumm — VaEmu, (10.13)

where V4 = d /Ry = (d/IR},0/IR),d/IRY). If a QM and an MM program are coupled for QM/MM calcula-
tions, the QM program will calculate the QM forces —V 4 Eqy acting on QM atoms and the MM program the MM
forces —V 4 Eymyr acting on the MM atoms. All that remains, is to calculate the forces acting on QM and MM atoms
due to the QM/MM interaction energy, —VaEqy/a- For mechanical embedding this will be entirely handled by
the MM program. For electronic embedding the forces are given as

tronic a
VAES;IC;A}A/IIC:ZA Z QB( - B)+ Z apli) QR dr+ Z VAV/{}{
BEMM Ryp BEMM 4 [r—Rg| BEMM
(10.14)
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for the derivatives with respect t0 the positions of the QM atoms A where Eyyyy is the electric field generated by
the MM point charges and and V/ B is the Lennard-Jones potential from (10.12) and

o “Ry) ) o
electronic __ A mechanic
VBEQM/MM _QBAEZQ’M Rfm +/ dr+VBEQM/MM

(10.15)
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for the derivatives with respect to the positions of the MM atoms B where Eqy is the electric field due to the QM
charge distribution. The contributions to the gradient due to the point charge interactions and due to the interaction
between the MM point charges and the QM electrons is evaluated by the QM program. Some QM programs do not
calculate the forces acting on the MM atoms (point charges) due to the presence of the QM system but in general
are able to return the electric field Eqys at arbitrary points in space which is then used to obtain these forces. The
van der Waals repulsion (Lennard-Jones interaction) between QM and MM atoms is treated by AMBER in the
same way as for semiempirical NDDO-type and DFTB methods.

10.2.2. General Remarks

When using the AMBER interface to external QM software packages for performing WFT or DFT based QM or
QM/MM MD simulations, it is absolutely critical to be aware of the capabilities and limitations of the QM method
to be employed. In particular, QM based MD can be more tricky than MM based MD in the sense that it is more
likely that the QM program can fail for example due to SCF convergence problems. This can be the case if the
geometry of the QM region is far from its ground state equilibrium, for example because a simulation is started
from a bad geometry or performed at high temperature.

We have gone to large efforts and analyzed a large set of test simulations to provide the best default parameters
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for the supported QM programs such that forces are computed with sufficient accuracy to guarantee energy coser-
vation for constant energy MD simulations. Of particular importance are SCF convergence and associated integral
neglect thresholds and the size of the grid used for the numerical quadrature of the exchange-correlation (XC)
potential and energy for DFT calculations. However, other than providing appropriate input parameters, AMBER
does not have any control over the external program and it is at the user’s discretion to employ sensible input
parameters for the QM program and to prepare the system such that the simulations are started at a reasonable
starting structure.

In any case we highly recommend to write restart files frequently so that a simulation can be restarted without
loss of much computational time in the case that a simulation should crash. The interface also stores the last in-
and output files of the external QM program during each MD step. Should there be any problems with the QM
program, it is therefore possible to analyze the reasons and take appropriate countermeasures.

The interface requires data to be exchanged between sander and the QM program. The default operation of
the interface is based on file exchange and system calls and, during each step of a geometry optimization or an
MD simulation, writes an input file for the external program, starts a single point gradient calculation with the
external program, and reads the energy and forces from the external program’s output file (binary ADF checkpoint
or formatted GAMESS, Gaussian, ORCA, Q-Chem, MRCC or TeraChem output files). Data communication via
MPI is also implemented and currently supported by TeraChem. An exception is Fireball, which is interfaced as a
linked library against sander (see below).

10.2.3. Limitations

In principle, all types of simulations that are possible with sander are supported. There are, however, some
restrictions for simulations that require sander to run in parallel, in particular path integral molecular dynam-
ics (PIMD) and replica exchange molecular dynamics (REMD), see the discussion of Parallelization below. The
interface to external QM programs also lacks some features regarding solvent models in comparison to the semiem-
pirical MNDO and DFTB QM/MM implementation that is available in AMBER, the most critical ones are listed
here.

Generalized Born Generalized Born (GB) implicit solvent models are not supported if external QM programs
are used for the QM region.

Particle Mesh Ewald (PME) and Periodic Boundary Conditions The PME approach for treating long-range
electrostatic QM/MM and QM/QM interactions in periodic systems is currently not supported. It is possible to
use periodic boundary conditions but a cutoff is used for the point charges to be included in the QM Hamiltonian
(determined by &gmmm namelist variable gmcut) thus truncating the long-range QM/MM electrostatic interactions
in (10.12). This leads to discontinuities in the potential energy surface and poor energy conservation for MD runs
in the NVE ensemble. The user may consider running non-periodic simulations with a cutoff that is larger than the
system size thus effectively including all interactions.

10.2.4. Performance Considerations

The computational cost of DFT is comparable to Hartree—-Fock (HF) theory which is the simplest WFT method
that serves as zeroth order approximation for more elaborate correlated WFT methods such as Mgller—Plesset per-
turbation theory, configuration interaction theory and coupled cluster theory. The calculations can be accelerated
by using density fitting approaches, sometimes called resolution-of-identity (RI) approximation, which in the case
of DFT with exchange-correlation (XC) functionals that do not require admixture of exact HF-exchange, leads to
speedups of roughly one order of magnitude without compromising the accuracy of the results. Nevertheless, the
computational cost of DFT is in general two to three orders of magnitude higher than that of semiempirical QM
models. We recommend to carefully test the performance of the QM program to choose an optimal number of
processor counts for parallelized QM calculations. Typical simulation performance for typical QM system sizes of
tens of atoms will be on the order of a few picoseconds per day, depending on the underlying QM model chosen.
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10.2.5. Parallelization

The MPI parallel executable sander.MPI can be used to run QM/MM MD simulations with external QM software
in which the MM portion of the calculation is parallelized. However, the computational cost of the MM part is
usually small compared to the cost of the QM part. In order to execute the QM part of the calculation in parallel,
the external QM program has to be instructed to do so, as described in the sections below.

In the case of PIMD or REMD simulations that require a separate energy and force evaluation for each group
at each time step, the parallelized executable sander. MPI has to be used. Multiple processes can be launched per
group to parallelize the MM calculations. Care has to be taken to choose the right number of parallel threads in
the external QM program. For example, on a machine with 32 cores, a simulation with 16 beads or replicas can
run the external QM program with 2 threads in parallel to make maximum use of the available processing cores.
If the available processors are spread over multiple nodes, special care has to be taken to ensure that the different
instances of the external QM program are launched on the correct nodes.

It is possible to execute sanderMPI in parallel via MPI while also running MPI or OpenMP parallel versions
of the external QM program. Depending on the MPI implementation, this can, however, fail. In our experience,
MPICH and MVAPICH work well while OpenMPI does not work.

10.2.6. Usage

All that is required to use the interface is a working installation of AMBER and one or more of the supported
QM programs. In order to use the external program from within sander, the &cntrl namelist variable ifgnt = 1
must be set to enable QM calculations and the &gmmm namelist variable gm_theory = ’EXTERN’ must be set to
enable the external interface. The &gmmm namelist variable gmmask or igmatoms is used for selecting the QM
region just as for QM/MM calculations with the semiempirical NDDO-type and DFTB approaches that are
natively available in AMBER. Charge and spin multiplicity for the QM region need to be defined via the variables
gmcharge and spin, respectively, in the &gmmm namelist. For a QM MD simulation, the sander input file
therefore needs to contain

! example input for OM simulation with external OM program
&cntrl

ifgnt = 1, ! switch on QOM/MM
/
&gmmm
gmmask = 'Q@x',
gmcharge = 0,

select QM atoms (here: make all QM)
charge on QM region (default = 0)
spin = 1,

gm_theory = 'EXTERN',

spin multiplicity of OM region (default = 1)

use external QM program

For QM/MM simulations with electronic embedding (this is the default) we recommend to include all MM point
charges as external electric field in the QM Hamiltonian to avoid problems with energy conservation. For non-
periodic simulations this can be achieved by setting the &gmmm namelist variable gmcut to a value larger than the
system size.

In addition either the &adf, &gms, &nw, &gau, &orc, &qgc, &mrcc or &tc namelist must be present to use
either ADF, GAMESS, NWChem, Gaussian, ORCA, Q-Chem, MRCC or TeraChem, respectively, and to assign
parameters for the external QM program. Please refer to the ADF, GAMESS, NWChem, Gaussian, ORCA, Q-
Chem, MRCC or TeraChem user manual for details on settings for the ab initio or DFT calculations. A list
of namelist variables and their default setting is given below. The defaults have been chosen such that energy
conserving MD simulations in the NVE ensemble are possible. NWChem has not been extensively tested.

Properties that are calculated along the trajectory are printed to property files with names adf_job.ext,
gms_Jjob.ext, gau_job.ext, orc_job.ext, gqc_job.ext and tc_job.ext, where extiseﬂherdipfbrdhxﬂe
moment (X, y, z component and absolute value) or chg for atomic charges, where supported. These property files
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are only written if requested and will be deleted at the beginning of a run, so back them up in case a trajectory
needs to be restarted.

All calculations with a spin multiplicity larger than one will automatically be performed in the framework of
an unrestricted formalism (as opposend to restricted open shell), that is with unrestricted HF (UHF), unrestricted
DFT (UDFT) and MP2 with a UHF reference wave function (UMP2).

In addition to controlling the external programs via the sander input file, you may supply a template input file
for the external program in order to provide input that is not supported via the program specific namelists. To
enable this option, you must set use_template = 1 in the program specific namelist. The format, name, and
input requirements for the template file vary with the external program as detailed in the corresponding program’s
documentation below. If you are using your own template, please make sure that the parameters of the QM method
(like SCF convergence threshold and XC quadrature grid size) yield sufficiently accurate forces. Please note that
program settings supplied via the program specific namelist are ignored if a template input file is used.

10.2.6.1. AMBER/ADF

To use ADF with the external interface, ADF must be properly installed on the working machine. In particular,
the executable adf must be in the search path. By default the Becke integration grid with quality “good” and the
ZLM fit method with quality “good” is employed. If you prefer to use the old pair fit method (or are using an older
ADF version that does not support the ZLM fit), we recommend to use “ZORA/QZAP” basis set for the density fit
for sufficiently accurate forces.

Limitations At present only mechanical embedding is supported.

&adf Namelist variables

basis Basis set type to be used in the DFT calculation. Valid standard basis set types are: SZ, DZ, DZP,
TZP, TZ2P, TZ2P+ and ZORA/QZAP. (Default: basis = "DZP’)

core Type of frozen core to use. Allowed values are: None, Small, Medium, Large. (Default: core =
’None’)

zlmfit Quality of density fit with the ZLM fit method. (Default: zlmfit = ’good’)

fit_type  Fitbasis set type to be used for density fitting with the old pair fit method. Valid values are identical
to the available basis sets (SZ, DZ etc) in which case the fit basis corresponding to the AO Basis will
be used. By default the ZLLM fit method will be used (Default: fit_type =)

xc Exchange-correlation functional to be used. Popular choices are ’'LDA VWN’, ’GGA BLYP’, "GGA
PBE’, "HYBRID B3LYP’ and "THYBRID PBEOQ’. Consult the ADF manual for all available options.
(Default: xc =’GGA BLYP’)

scf_iter  Maximum number of SCF cycles allowed. (Default: scf_iter = 50)

scf_conv  Threshold upon which to stop the SCF procedure. The tested error is the commutator of the Fock
matrix and the density matrix. Convergence is considered to be achieved if the maximum element of
the commutator (which is zero for an optimized wave function) is smaller than scf_conv. (Default:
scf_conv = 1.0d-06)

beckegrid Quality of Becke integration grid. Allowed values are: Normal, Good, VeryGood. (Default: core =
’Good’)

integration Numerical integration accuracy for integration with olde teVelde-Baerends integration grid

(Voronoi cells). By default the Becke grid will be used. The old integration grid can be used by
specifying a number larger than 0, we recommend at least 5.0. (Default: integration = -1.0)
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num_threads Number of threads (and thus CPU cores) for ADF to use. Note that this is not requied if you
are running in a queuing system as ADF will automatically use the full number of reserved cores.
(Default: num_threads = O [this causes ADF to use all available cores on a machine])

use_dftb  Specifies whether DFTB shall be used with ADF’s DFTB program dftb. If use_dftb = 1 then DFTB
will be used and only variables charge and scf_conv will be considered. (Default: use_dftb = 0 [do
not use DFTB, regular DFT calculation]) - works only with older DFTB versions (prior to 2011).

exactdensity The exact (as opposed to fitted) electron density is used for the evaluation of the exchange-
correlation potential if exactdensity = 1. (Default: exactdensity = 0)

use_template Determine whether or not to use a user-provided template file for running external programs.
(Default: use_template = 0)

ntpr Controls frequency of printing for dipole moment to file adf_job.dip (Defaults to &cntrl namelist
variable ntpr)

dipole Toggles writing of dipole moment to file adf_job.dip (Default: dipole = 0)

Example An input file for QM or (mechanical embedding) QM/MM MD with ADF using the PBE functional
and the TZP basis set therefore would have to contain

&adf
xc = 'GGA PBE',
basis = 'TZP',
/

This would execute a simulation in which the Beckgrid with quality quality good and the ZLM fit with quality
good are used (see default values above).

Template input file The template file for ADF should be named adf_job.tpl and must contain the following
keywords:

BASIS ... END
SAVE TAPE21

You should not include the following (block) keywords in the template file as these are taken care of by sander:

UNITS

FRAGMENTS ... END
RESTART

GRADIENT

ATOMS ... END

10.2.6.2. AMBER/GAMESS-US

To use GAMESS with the external interface, GAMESS must be compiled on the target system. Make note of the
version number you specify during the GAMESS compilation process (default is 00 which makes the GAMESS
execution script rungms look for the executable gamess.00.x). If you use a different version number you must
specify it with the gms_version namelist variable. $GMS_pPATH should be set to the path where the script rungms
is located (for example /opt/gamess/). We assume that the rungms script copies the output .dat files to the
directory from which GAMESS is invoked. If this is not the case, please modify the script rungms accordingly.

Limitations Only mechanical embedding is supported with GAMESS. The available QM models are limited to
HF, DFT and MP2 since only for these analytical gradients are available in GAMESS.
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&gms Namelist variables

basis

metho

nrad

nleb

scf_c

maxit

d

onv

Basis set type to be used in the calculation. Presently supported are the Pople type basis sets STO-3G,
6-31G, 6-31G*, 6-31G**, 6-31+G*, 6-31++G*, 6-311G, 6-311G* and 6-311G**. Also supported
are the Karlsruhe valence triple zeta basis sets KTZV, KTZVP and KTZVPP (with none, one and
two polarization functions, respectively) and the Dunning-type correlation consistent basis sets CCn
n=D,T,Q,S5, 6; officially called cc-pVnZ) and ACCn (as CCn but augmented with a set of diffuse
function, officially called aug-cc-pVnZ). (Default: basis = "6-31G*")

QM method to be used. At present, we support "HF’ for Hartree—Fock, "MP2’ for second order
Mgller-Plesset perturbation theory and any of the supported DFT functionals. Popular choices for
for DFT functionals include BP86, BLYP, PBE, B3LYP or PBEQ. (Default: method = "BP86")

Number of radial points in the Euler-MacLaurin quadrature of the XC potential and energy density.
(Default: nrad = 96)

Number of angular points in the Lebedev grids for the numerical quadrature of the XC potential
and energy density. (Default: nleb = 590 [The GAMESS default of 302 is not accurate enough to
conserve energy])

SCF convergence threshold. Convergence is reached when the absolute density change between two
consecutive SCF cycles is less than scf_conv}. (Default: scf_conv = 1.0D-06)

Maximum number of SCF iterations. (Default: maxit = 50)

gms_version This is the version number specified when building GAMESS. (Default: gms_version = 00)

num_threads Number of threads (and thus CPU cores) for GAMESS to use. Note that GAMESS may require a

mwords

special setup in the rungms script to be able to run using multiple threads. Unless num_threads is
explicitly specified, GAMESS will only use one thread (run on one core). (Default: num_threads =

1y

The maximum replicated memory which your job can use, on every node. This is given in units
of 1,000,000 words (as opposed to 1024*1024 words), where a word is defined as 64 bits. You
may need to increase this value if GAMESS crashes due to not having enough memory allocated.
(Default: mwords = 50)

use_template Determine whether or not to use a user-provided template file for running external programs.

ntpr

chelpg

dipol

e

(Default: use_template = 0)

Controls frequency of printing for dipole moment and atomic charges to files gms_prop.ext (De-
faults to &cntrl namelist variable ntpr)

CHELPG charges are calculated if chelpg = 1. These charges are written to the file gms_prop.chg
(Default: chelpg = 0)

Toggles writing of dipole moment to file gms_prop.dip (Default: dipole = 0)

Example An input file for QM or (mechanical embedding) QM/MM MD with GAMESS using the PBE
functional and the 6-31G** basis set that should run GAMESS on 16 CPU cores therefore would have to contain

&gms

method = 'DFT',
dfttyp = 'PBE’',
basis = '6-31Gxx',

num_threads = 16,
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Template input file The template file for GAMESS should be named gms_job.tpl and the $CONTRL card must
contain the following keywords:

RUNTYP=GRADIENT
UNIT=ANGS
COORD=UNIQUE

You should not include the $paTA card in the template file as it is taken care of by sander.

10.2.6.3. AMBER/Gaussian

To use Gaussian with the interface, Gaussian 16, Gaussian 09, or Gaussian 03 must be properly installed on the
system and a g16, g09, or g03 executable must be in the path.

Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations using electrostatic embedding
with and without PBCs. This leads to discontinuities in the potential energy surface and poor energy conservation.
In the case of QM/MM simulations without PBCs, this cutoff (gmcut variable in the &gmmm namelist) can be set
to a number that is larger than the simulated system, thus effectively not applying a cutoff. This is recommended.

&gau Namelist variables

basis Basis set type to be used in the calculation. Any basis set that is natively supported by Gaussian
can be used. Examples are the single zeta, split valence or triple zeta Pople type basis sets STO-3G,
3-21G, 6-31G and 6-311G. The split-valence or triple zeta basis sets can be augmented with diffuse
functions on heavy atoms or additionally hydrogen by adding one or two plus signs, respectively,
as in 6-31++G. Polarization functions on heavy atoms or additionally hydrogens are used by adding
one or two stars, respectively, as in 6-31G**. (Default: basis = "6-31G*")

method Method to be used in the calculation. Can either be one of the WFT models for which Gaussian
supports gradients, for example RHF or MP2, or some supported DFT functional. Popular choices
are BLYP, PBE and B3LYP. (Default: method = "BLYP")

scf_conv  Threshold upon which to stop the SCF procedure. The tested error is the commutator of the Fock
matrix and the density matrix. Convergence is considered to be achieved if the maximum element of
the commutator (which is zero for an optimized wave function) is smaller than scf_conv}. Set in the

form of 10~V. (Default: scf_conv = 8)

num_threads Number of threads (and thus CPU cores) for Gaussian to use. Unless num_threads is explicitly
specified, Gaussian will only use one thread (run on one core). (Default: num_threads = 1)

executable Optional name of the Gaussian executable. (Default: If a string for this namelist variable is not
specified then g16, g09, and g03 are tried in that order producing a fatal error if none are found.

Note that if a string is specified then it is a fatal error if that executable is not found.)

use_template Determine whether or not to use a user-provided template file for running external programs.
(Default: use_template = 0)

ntpr Controls frequency of printing for dipole moment to file gau_job.dip (Defaults to &cntrl namelist
variable ntpr)

dipole Toggles writing of dipole moment to file gau_job.dip (Default: dipole = 0)

mem String that specifies how much memory Gaussian should be allowed to use. (Default: *256MB’)
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Example An input file for QM or QM/MM MD with Gaussian using the BP86 functional and the 6-31G**
basis set and running in parallel on 8 threads (using 1 GB of memory) therefore would have to contain

&gau
method = 'BP86',
basis = '6-31G*x',
num_threads = 8,

mem='1GB',

Template input file The template file for Gaussian should be named gau_job.tpl and should only contain the
route section of a Gaussian input file. The route section defines the method to be used and SCF convergence
criteria. Charge and spin multiplicity are specified via the &gmmm namelist. For example for a B3LYP
calculation with 6-31G* basis set, the route section would be:

#P B3LYP/6-31G* SCF=(Conver=8)

Do not include any information about coordinates or point charge treatment since this will all be handled by sander.
Also, do not include any Link 0 Commands (line starting with %) since these are handled by sander. If you want
to run Gaussian in parallel, specify the number of processors via the num_threads variable in the &gau namelist.

10.2.6.4. AMBER/Orca

To use Orca with the interface, Orca must be properly installed on the system, the Orca executables need to
reside in a directory that is in the search path. For convenience of use, namelist parameters in general correspond
to Orca keywords, see the Orca manual for details.

Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations with and without PBCs. This
leads to discontinuities in the potential energy surface and poor energy conservation. In the case of QM/MM
simulations without PBCs, this cutoff (gmcut variable in the gmmm namelist) can be set to a number that is larger
than the simulated system, thus effectively not applying a cutoff. This is recommended.

Also note that ORCA only supports OpenMPI for parallel calculations.

&orc Namelist variables

basis Basis set type to be used in the calculation. Possible choices include svp, 6-31g, etc. See Orca
manual for a complete list. (Default: basis = "SV(P)")

cbasis Aucxiliary basis set for correlation fitting. See Orca manual for a complete list. (Default: basis =
HNONEH)

jbasis Auxiliary basis set for Coulomb fitting. See Orca manual for a complete list. (Default: basis =
HNONEH)

method Method to be used in the calculation. Popular choices include hf, pm3, blyp, and mp2. (Default:

method = "blyp")

convkey General SCF convergence setting for simplified Orca input. Can take values *"TIGHTSCF’, ’VERY-
TIGHTSCF, etc. (Default: convkey="VERYTIGHTSCF’)

scfconv SCF convergence threshold for the energy. (Default: scfconv = -1, that is, not in use since we
use the general convergence settings keyword convkey. Otherwise this would lead to SCF energy
convergence of 10 Vau, if set to N.)
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maxiter

maxcore
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Grid type used during the SCF for the XC quadrature in DFT. (Default: grid = 4, this corresponds to
Intacc = 4.34 for the radial grid and an angular Lebedev grid with 302 points. Conservatively chosen
together with finalgrid to conserve energy.)

Grid type used for the energy and gradient calculation after the SCF for the XC quadrature in DFT.
(Default: finalgrid = 6, this corresponds to Intacc = 5.34 for the radial grid and an angular Lebedev
grid with 590 points. Conservatively chosen together with grid to conserve energy.)

Maximum number of SCF iteractions. (Default maxiter = 100)

Global scratch memory (in MB) used by Orca. You may need to increase this when running larger
jobs. See Orca manual for more information. (Default maxcore = 1024)

num_threads Number of threads (and thus CPU cores) for Orca to use. Note that Orca only supports OpenMPL

(Default: num_threads = 1)

use_template Determine whether or not to use a user-provided template file for running external programs.

ntpr

dipole

(Default: use_template = 0)

Controls frequency of printing for the dipole moment to file orc_job.dip (Defaults to &cntrl
namelist variable ntpr)

Toggles writing of the dipole moment to file orc_job.dip (Default: dipole = 0)

Example An input file for QM or QM/MM MD with Orca using the BLYP functional, the SVP basis set
therefore would have to contain

&orc

method = 'blyp',

basis

sSvp ',

Template input file The template file for Orca should be named orc_job.tpl and must at least contain
keywords specifying the method and basis set to be used in the calculation, for example:

# ORCA input file for BLYP/SVP simulation
! BLYP SVP

You should not include the following keywords in the template file as these are taken care of by sander (like
setting the runtype and adding coordinates):

# NOT to be included in ORCA input file
'engrad

'energy # (or any run type)

$pointcharges

*xyzfile # (or any coordinates)

10.2.6.5. AMBER/Q-Chem

To use Q-Chem with the interface, Q-Chem must be properly installed on the system. The g-chem executable
needs to reside in a directory that is in the search path. For convenience of use, namelist parameters in general
correspond to Q-chem keywords, see the Q-Chem manual for details. The interface has been tested with Q-Chem
versions 4.0.0.1 and 4.1.1 for HF, DFT and MP2. Other methods have not been tested and could cause problems -
please be careful and verify that forces/energies used by sander are correct in this case.
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Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations with and without PBCs. This
leads to discontinuities in the potential energy surface and poor energy conservation. In the case of QM/MM
simulations without PBCs, this cutoff (gmcut variable in the gmmm namelist) can be set to a number that is larger
than the simulated system, thus effectively not applying a cutoff. This is recommended.

&gc Namelist variables

basis Basis set type to be used in the calculation. Possible choices include *6-31g**’, cc-pVDZ’ etc. See
the Q-chem manual for a complete list. (Default: basis = *6-31G*’ for DFT calculations and basis =
"cc-pVDZ’ for MP2)

auxbasis  Auxiliary basis set for density fitting / RI methods. See Q-Chem manual for a complete list. (Default:
basis = 'rimp2-cc-pVDZ’ for RI-MP2 calculations, otherwise none)

method Method to be used in the calculation. Popular choices include "BLYP’ or other density function-
als, '"MP2’ and 'RIMP2’. Alternatively, the keywords exchange and correlation can be employed.
(Default: method = ’BLYP’)

exchange  Exchange method. Can be specified together with the correlation keyword in place of the combined
method keyword. (Default: exchange ="

correlation Correlation method. Can be specified together with the exchange keyword in place of the combined
method keyword. (Default: correlation =)

scf_conv  SCF convergence threshold. (Default: scfconv = 6)

num_mpi_prcs Number of MPI processes for Q-Chem to use. The total number of CPUs to be used is
num_mpi_pres times num_threads. (Default: num_mpi_pres = 1)

num_threads Number of threads for Q-Chem to use for each MPI process. Really this is number of threads. The
total number of CPUs to be used is num_mpi_prcs times num_threads. (Default: num_threads = 1)

use_template Determine whether or not to use a user-provided template file for running external programs.
(Default: use_template = 0)

ntpr Controls frequency of printing for the dipole moment to file gc_job.dip (Defaults to &cntrl namelist variable
ntpr)

dipole Toggles writing of the dipole moment to file gc_job.dip. This is currently not supported. (Default:
dipole = 0)
guess Toggles use of MOs from previous step as initial guess to accelerate SCF convergence. Any string

different from 'read’ will disable this. (Default: guess = 'read’)

Example An input file for QM or QM/MM MD with Q-Chem using MP2 with the cc-pVTZ basis set therefore
would have to contain

&qc
method = 'mp2',
basis = 'cc-pVTZ',
/
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Template input file The template file for Q-chem must be named gc_job.tpl and must only contain keywords
in the Q-Chem $rem input section that specify the QM method and basis set to be used in the calculation, for
example:

EXCHANGE becke
CORRELATION lyp
BASIS 6-311G*x
SCF_CONVERGENCE 7

The interface will take care of adding other keywords to the $rem section such as JOBTYPE and writing the
$molecule input file sections.

10.2.6.6. AMBER/MRCC

To use MRCC with the interface, the MRCC program suite must be properly installed on the system. The MRCC
driver program dmrcc needs to reside in a directory that is in the search path. For convenience of use, namelist
parameters in general correspond to MRCC keywords, see the MRCC manual for details. The interface has been
tested with the MRCC release from July 15, 2016 for HF and DFT. Other methods have not been tested but should
also work - please be careful and verify that forces/energies used by sander are correct in this case.

Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations with and without PBCs. This
leads to discontinuities in the potential energy surface and poor energy conservation. In the case of QM/MM
simulations without PBCs, this cutoff (gmcut variable in the gmmm namelist) can be set to a number that is larger
than the simulated system, thus effectively not applying a cutoff. This is recommended.

&mrcc Namelist variables

basis Basis set type to be used in the calculation. Possible choices include *6-31g**’, *’cc-pVDZ’ etc. See
the MRCC manual for a complete list. (Default: basis = 6-31G*’)

calc Type of calculation, e.g. "SCF’, "B3LYP’, "MP2’, "CCSD(T)’, etc. (Default: calc = ’SCF’)
dft Can be specified to request a DFT calculation and specify the DFT method. (Default: dft = ’off”)
mem Memory that will be allocated for the calculation. (Default: mem = 256MB”)

verbosity Controls the verbosity of the MRCC output file. (Default: verbosity = 2)

ntpr Controls frequency of printing for the dipole moment to file mrcc_job.dip (Defaults to &cntrl
namelist variable ntpr)

do_dipole Toggles writing of the dipole moment to file mrcc_job.dip. (Default: dipole = 0)

nprintlog Frequency of storing MRCC output files during a minimization of molecular dynamics run. (Default:
keep only last output file, nprintlog = 0)

debug Toggles debug mode, which prints subroutine calls and additional information about the AMBER/M-
RCC interface. (Default: no debugging, debug = 0)

use_template Requests use of a template file to generate MRCC input files to utilize all the capabilities of that
are not available through &mrcc namelist keywords. The template file is basically a truncated MINP
file (the default input file for MRCC) which only includes the MRCC keywords. (Default: do not
use a template input file, use_template = 0)

The following &mrcc namelist variables control multilayer calculations (i.e. QM/QM/MM or QM/QM/QM/MM
embedding[353]; the region highlighted in bold is controlled by the keyword). Only single point calculations are
currently possible with such mulitlayer calculations.
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embed

embedatoms

nmo_embed

corembed

Specifies the method of the embedding QM region (2. layer) in a QM/QM/MM (3 layer) calculation
or specifies the method of the 3. layer in a QM/QM/QM/MM (4 layer) calculation. Please read the
MRCC manual for available options. (Default: embed = ’off”)

Specifies the active atoms of the embedded QM region (1. layer) in a QM/QM/MM (3 layer) calcu-
lation or specifies the active atoms of the 1. and 2. layer in a QM/QM/QM/MM (4 layer) calculation.
Comma separated list of integers (Default: embedatoms = 0)

Specifies the number of active MOs of the embedded QM region (1. layer) in a QM/QM/MM (3
layer) calculation or specifies the number of active MOs of the 1. and 2. layer in a QM/QM/QM/MM
(4 layer) calculation.

=0 The program automatically determines the MOs of the active region with the Boughton-Pulay
(BP) algorithm. (default)

>0 Number of MOs that will be selected based on the Mulliken charges of the active atoms.

Specifies the low-level correlation method of the embedding QM region (2. layer) in a
QM/QM/MM (3 layer) calculation or specifies the low-level correlation method of the 2. layer
in a QM/QM/QM/MM (4 layer) calculation. Please read the MRCC manual for available options.
(Default: corembed = ’off”)

corembedatoms Specifies the active atoms of the embedded QM region (1. layer) in a QM/QM/MM (3 layer)

calculation or specifies the active atoms of the 1. layer in a QM/QM/QM/MM (4 layer) calculation.
Please note that the corembedatoms have to be a subset of the embedatoms if a 4 layer calculation is
requested. Comma separated list of integers (Default: corembedatoms = 0)

nmo_corembed Specifies the number of active MOs of the embedded QM region (1. layer) in a QM/QM/MM (3

layer) calculation or specifies the number of active MOs of the 1. layer in a QM/QM/QM/MM (4
layer) calculation.

=0 The program automatically determines the MOs of the active region with the Boughton-Pulay
(BP) algorithm. (default)

> 0 Number of MOs that will be selected based on the Mulliken charges of the active atoms.

Examples An input file for QM or QM/MM MD with MRCC using DFT with the BLYP functional and the
cc-pVTZ basis set therefore would have to contain

&mrcc
calc = 'blyp',
basis = 'cc-pVTZ',
/

An example input for a multilayer QM/QM/MM calculation with LCCSD(T) for a subset of QM atoms 7 to 12
embedded into the remainder of the QM region described by PBE (i.e. LCCSD(T)/PBE/MM) would be

&mrcc
calc = 'LCCSD(T)',
basis = 'cc-pVTZ',

embed = 'PBE'’,
embedatoms = 7,8,9,10,11,12

This assumes that atoms 7-12 are part of the QM region. A 4-layer QM/QM/QM/MM calculation with
LCCSD(T) for atoms 7 to 12 embedded into LMP2 for atoms 13 to 16 and the remainder described by PBE (i.e.
LCCSD(T)/LMP2/DFT/MM) would be requested with
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&mrcc
calc = 'LCCSD(T)',
basis = 'cc-pVTZ',

embed = 'PBE',

embedatoms = 7,8,9,10,11,12,13,14,15, 16,
corembed = 'LMP2',

corembedatoms = 7,8,9,10,11,12,

Template input file The template file for MRCC must be named mrcc_job.tpl and must only contain keywords
that specify the QM method and basis set to be used in the calculation. Not to be included are following keywords:
gmmm, gqmreg, dens, pointcharges, geom, embed, corembed, scfiguess. The interface will take care of adding
other keywords and writing the coordinate input file section.

10.2.6.7. AMBER/TeraChem

To use TeraChem with the interface, TeraChem must be properly installed on the system. In particular, the
terachem executable needs to be in the search path. Namelist parameters correspond to TeraChem keywords, see
the TeraChem manual for details.

Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations with and without PBCs. This
leads to discontinuities in the potential energy surface and poor energy conservation. In the case of QM/MM
simulations without PBCs, this cutoff (gmcut variable in the &gmmm namelist) can be set to a number that is
larger than the simulated system, thus effectively not applying a cutoff. This is recommended.

&tc Namelist variables

basis Basis set type to be used in the calculation. Possible choices presently (TeraChem version 1.4) are
’STO-3G’, °3-21G’, ’6-31G’ and ’6-311G’, ’3-21++G’ and *6-31++G’ (Default: basis = ’6-31G’)

method Method to be used in the calculation, can be either 'RHF’ or some supported DFT functional. Popular
choices are ' BLYP’, ’PBE’ and "B3LYP’. (Default: method = "BLYP’)

dftd Determines whether dispersion corrections are applied in the case of DFT calculations. (Default:
dftd =’no’)

precision Precision model setting (single vs double precision). (Default: precision = 'mixed’)
dynamicgrid Use coarse grid during early SCF iterations. (Default: dynamicgrid = ’yes’)
threall Determines a variety of thresholds. (Default: threall = 1.0E-11)

convthre  SCF convergence threshold for the wavefunction. (Default: convthre = 3.0E-05, which leads to SCF
energy convergence of approximately 10~ au or 10~* kcal/mol)

maxit Maximum number of SCF iterations. (Default: maxit = 100)

dftgrid DFT grid to be employed for the numerical XC quadrature in DFT calculations. (Default: dftgrid =

1y
ngpus Determines how many GPUs are to be used. (Default: ngpus = 0, which uses all available GPUs)
gpuids If ngpus has a value other than zero, this determines the IDs of the GPUs to be used for the calcula-

tion. (Default: gpuids =0, 1, 2, etc.)

executable Name of the TeraChem executable. (Default: executable = terachem)
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use_template Determine whether or not to use a user-provided template file for running external programs.
(Default: use_template = 0)

ntpr Controls frequency of printing for dipole moment and atomic charges to files tc_job.ext. (Defaults
to &cntrl namelist variable ntpr)

charge_analysis Toggles writing of atomic charges to file tc_job. chg (Options: 'none’ or ’Mulliken’. Default:
dipole = "none’)

dipole Toggles writing of dipole moment to file tc_job.dip (Default: dipole = 0)

Example An input file for QM or QM/MM MD with TeraChem using the PBE functional and the 6-31G* basis
set therefore would have to contain

&tc
method = 'PBE',
basis = '6-31Gx',
/

Template input file The template file for Terachem should be named tc_job.tpl and must at least contain the
following keywords:

basis
method

Any content of the template file after a line containing the end keyword will be ignored.
You should not include the following keywords in the template file as these are taken care of by sander.
Instead, specify these via the &gmmm or &tc namelist:

run
charge
spinmult
coordinates
pointcharges
amber

gpus

10.2.6.8. AMBER/Fireball

To use Fireball with the QM/MM interface, a special version of sander must be compiled and linked against the
Fireball library (libfireball.a). The Fireball library can be obtained from the fireball-qmd web site at https://fireball-
gmd.github. Compilation requires the Intel compilers and Intel MKL library. You can compile a version of sander
that supports Fireball as follows (bash assumed):

export FIREBALLHOME=/path/to/fireball.a
export MKL_HOME=/path/to/Intel/MKL/library
cd $AMBERHOME

./configure —-fireball intel

make install

It is possible to compile the MPI parallel version of sander in the same fashion. However, only the MM part of the
calculation will execute in parallel.
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Limitations A cutoff is applied to QM/MM interactions in QM/MM simulations with and without PBCs. This
leads to discontinuities in the potential energy surface and poor energy conservation. In the case of QM/MM
simulations without PBCs, this cutoff (gmcut variable in the &gmmm namelist) can be set to a number that is
larger than the simulated system, thus effectively not applying a cutoff.

Basis set Fireball requires a basis set, commonly provided in an “Fdata” directory. This directory contains all
the interactions (different contributions to the electronic Hamiltonian matrix elements) for the different types of
atoms (C, H, O, N, etc.) appearing in the QM region. In principle, the Fdata directory should be placed in the
working directory. Alternatively, the path where the Fdata directory is located can be defined using the variable
basis in the &fb namelist variables (see below).

This Fdata directory can be downloaded from the fireball-qmd web (https://fireball-qmd.github). Advanced
users can also calculate their own Fdata using the create set of programs that can be found in the fireball-qmd
github repository.

&fb Namelist variables
basis Path to the Fdata directory. (Default: basis = *./Fdata’)

max_scf_iterations Maximum number of iterations in the loop for the calculation of the self-consistent
charges. (Default: max_scf_iterations = 70)

sigmatol  Threshold for selc-consistency in the electronic structure calculations. (Default: sigmatol = 1.0E-08)

idftd3 DFTD3 dispersion correction. (No correction: idftd3 = 0; Dispersion correction for BLYP: idftd3 =
1; Default: idftd3 = 0)

iwrtcharges Writes atomic charges in fireball output. (Default: iwrtcharges = 0)
iwrteigen Writes energy levels in fireball output. (Default: iwrteigen = 0)

Fora complete list of all &fb Namelist variables, please visit http://nanosurf.fzu.cz/wiki/doku.php?id=fireball

Example An input file for QM or QM/MM MD using AMBER/FIREBALL with all the default values would
just have to contain an empty &fb naemlist

&fb

As another example, a simulation using DFTD3 dispersion corrections for BLYP that also writes out the atomic
charges with Fdata in a central location of the user’s home directory would need the following input:

&fb
basis = '/home/fireball/Fdata’,
idftd3 = 1,
iwrtcharges = 1

/

To launch the simulation, simply run sander as follows:

sander -0 -1 mdin -o mdout -p prmtop -c inpcrd -x mdcrd -r rstrt > amberfireball.out
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10.3. Adaptive solvent QM/MM simulations

Traditional QM/MM approaches are based on a static QM/MM partitioning in which atoms belonging to the
QM and MM regions are selected at the beginning of a molecular dynamics simulation. Such a static partitioning
cannot be applied if part of the bulk solvent in the vicinity of a region of interest needs to be included in the QM
region. Examples include cases in which the bulk solvent participates directly in a chemical reaction or in which
important interactions between the solute and the bulk solvent, such as polarization and charge transfer, are not
well parameterized at the QM/MM level and thus need to be described quantum mechanically. Due to molecular
diffusion, solvent molecules will constantly exchange between the QM and MM regions and thus require a special
treatment.

Several approaches have been developed that allow molecules to change their QM or MM character when cross-
ing the boundaries between the QM and MM regions. A good overview and comparison of these approaches
is available in the work by Bulo ef al.[354]. One of the most accurate approaches is the difference-based adap-
tive solvation (DAS) method[355], in the following simply called adaptive QM/MM (adQM/MM). This method
is available in Amber through a parallelized implementation that has been developed by Andreas Goetz (SDSC)
with help from Ross Walker (SDSC), Rosa Bulo (Utrecht University) and Kyoyeon Park (UCSD). The useful-
ness of this adQM/MM approach for aqueous systems has been demonstrated with a development version of this
implementation[356]. If you publish work that results from using this implementation, please cite the following
work:

* A. W. Gotz, K. Park, R. E. Bulo, F. Paesani, R. C. Walker, Efficient adaptive QM/MM implementation:
Application to ion binding by peptides in solution, in preparation.

* R.E. Bulo, B. Ensing, J. Sikkema, L. Visscher, Toward a practical method for adaptive QM/MM simulations,
J. Chem. Theory Comput. 9, 2212-2221 (2009), DOI: 10.1021/ct900148e

In what follows we will describe the theoretical background of this implementation and how to perform adQM/MM
simulations. For an alternative approach, see section 10.4.

10.3.1. Theoretical background

In adQM/MM simulations, we distinguish three different regions, an active region (A), a transition region (T),
and the environment region (E). The active region contains both the part of the system that is permanently treated
quantum mechanically (similar to the QM region in regular QM/MM simulations) and the solvent molecules in its
vicinity that are also treated quantum mechanically. The E region is the part of the system that is treated at the MM
level. Within the T region, molecules change their character from purely QM to purely MM, that is, molecules in
the T region have partial QM and MM character, depending on their position within the T region. The T region that
connects the A and E regions is required to guarantee that the potential energy surface or forces remain continuous
throughout the simulation.

10.3.1.1. System partitioning

In the adQM/MM method[355], a partial MM character A is assigned to each molecule in the T region. The
value of A depends on the distance of the molecule from the center of the A region according to

0 ¥ <Ra
Ar) = o CRAEBRIA Ry <y < Ry, (10.16)
1 r Z RT

where Rp and Rt are the inner and outer radii delimiting the T region. The switching function thus interpolates
smoothly between QM (A region) and MM (E region).

The adQM/MM energy can be constructed as a weighted average of regular QM/MM energies due to all possible
2NT partitionings in which the Nt molecules in the T region are assigned either to the QM or the MM region,
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EXOM/MM _ Y 6 g MMM (10.17)
a

The statistical coefficients o, for the QM/MM partitionings are defined on basis of the A values defined above,

) {0 if max({A}&") > min({A}}1¥) (10.18)

min({A}3) — max({A}3")  if max({A}") < min({A}}™)’

where {4} and {1}MM are the sets of A values for a given QM/MM partitioning a that are assigned to the QM
and MM regions, respectively. Due to this choice of coefficients, the weight ¢, of a QM/MM partitioning is zero if
the partition contains one or more MM molecules closer to the A region than any of the QM molecules. The total
number of nonzero QM/MM partitionings in an adQM/MM simulations is thus Nt 4+ 1. In addition it is guaranteed
that the weight of each partition varies smoothly from O to 1, removing discontinuities in the system dynamics that
would appear in standard QM/MM simulations if a molecule would change its character by diffusing in or out of
the QM region.

10.3.1.2. Force interpolation

The forces resulting from the adQM/MM energy 10.17 are a weighted sum of the force from each nonzero
QM/MM partitioning and also contain a term that depends on the derivatives of the weight functions,

QM/MM
FadoM /MM _ Yo IES" @EQM/MM
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This introduces an artificial dependence on the relative energies of the different QM/MM partitionings. Thus, in
place of the energy interpolation scheme, a force interpolation is applied in which the forces are given as

QM /MM
fradoM /MM _ Z Jo i J E ) (10.20)

The force interpolation does not conserve the energy from equation 10.17 but it is possible to define a conserved
quantity according to

FadOM/MM _ padOM/MM W, (10.21)

where the correction term W is defined through

oW _ —Z 904 EQM/MM. (10.22)

The quantity E2@M/MM is not a potential energy since it is only defined along the path taken by the system during
the simulation. It is nevertheless useful to monitor this quantity to determine whether the simulation settings lead
to numerical stability. The correction term W can be expressed as the path integral of its force vector from equation
10.22, which can be discretized. For step n of an MD simulation it is given as

W, ziZE,?M/MM(i) G"("H);%(i_l). (10.23)

i a

The Amber implementation uses exclusively the force interpolation scheme from equation 10.20 and optionally
computes the correction term W from equation 10.23 to enable monitoring of the conserved quantity £24QM/MM
from equation 10.21.
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10.3.1.3. Alternative definitions of active, transition and environment regions

So far we have defined the boundaries between the A, T, and E regions with the distances Ry and Rt from
the center of the active region. In this case both the A and the T regions have fixed volumes but the number
of solvent molecules inside each region can vary during the simulation. Alternatively, we can fix the number of
solvent molecules Ny and Nt within the A and T regions, respectively. In this case the volume of the A and
T regions as well as the radii Ry and Rt will vary during the course of a simulation. The advantage of fixing
the number of solvent molecules in the T region is that the number of QM/MM partitionings that needs to be
considered also remains constant (Nt + 1). This is useful to optimize load balancing in a parallel adQM/MM
implementation. The downside is that expression 10.23 does not strictly hold any more since the coefficients o,
depend on the A values which in turn depend on Rx and Rt. However, in practice, this is usually not an issue since
the conserved quantity £242M/MM peeds monitoring only during simulation setup to choose settings that afford
sufficient numerical stability. One thus can test simulation settings with fixed radii R4 and Rt and then switch to
fixed molecule numbers N and Nt for production runs.

10.3.2. Running adQM/MM simulations with sander

Performing simulations with the adQM/MM approach described above requires the MPI parallelized sander
executable sander.MpI. The implementation features a dual layer parallelization in which the calculations for all
individual QM/MM partitionings are performed in parallel. Each of these QM/MM calculations can in turn be run
in parallel. The parallelization across QM/MM partitionings is based on the multisander code infrastructure which
effectively runs independent copies of sander for each QM/MM partitioning (similar to the replica exchange, path
integral and thermodynamic integration implementations).

In order to run an adQM/MM simulation, the mdin input file needs to be set up similar to a regular QM/MM
simulation. The QM region as defined in the &gmmm namelist defines the atoms that are in the permanent QM
region. In addition, the &gmmm namelist variable vsolv needs to be set to 2 or 3 for fixed number of molecules
in the A and T region or fixed size of A and T region, respectively. The following shows the minimum additions
to the mdin input file that are required to perform an adQM/MM simulation as compared to a traditional QM/MM
simulation with fixed QM and MM regions:

# mdin file - minimum additional content for adaptive solvent QM/MM

&qmmm
adjust_gq = 0, ! required, charge cannot be redistributed
vsolv = 2, ! switch on adQM/MM with fixed molecule numbers
! in A and T region
/
&vsolv
nearest_qgm_solvent = 6, ! number of solvent molecules in A region
/
&adgmmm
n_partition = 4, ! number of QM/MM partitionings
! = number of molecules in T region + 1
/

In this example, a fixed number of solvent molecules is contained in the A region (6) and in the T region (3, since
the number of QM/MM partitionings is Nt + 1). Thus, the volume of the A and T regions changes during the
simulation. Details of all namelist variables are collected below.

In addition, a groupfile for multisander is required. This groupfile should point all sander copies to the same
mdin input file, inpcrd coordinate file and prmt op parameter and topology file:

# groupfile for adaptive solvent QM/MM run with n_partition = 4
-0 -i mdin -c inpcrd -p prmtop
-0 -i mdin -c inpcrd -p prmtop
-0 -i mdin -c inpcrd -p prmtop
-0 -i mdin -c inpcrd -p prmtop
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If you explicitly specify output file names, make sure to give separate names to each group (for example
mdout . 000, mdout.001 etc), see also the multisander documentation. The mutisander adQM/MM simulation
can then be executed with

Empirun -np 4 sander.MPI -rem 0 -ng 4 —-groupfile groupfile

In this example, 4 MPI processes will be launched for 4 process groups (sander copies). The individual QM/MM
calculations for each partitioning would thus run in serial. To run the individual QM/MM calculations in parallel,
the number of MPI processes must be a multiple of the number of process groups.

Adaptive solvent QM/MM simulations can be performed both with the semiempirical NDDO-type and DFTB
methods that are native to sander or with QM methods that are available via the interface to external QM pro-
grams. In the latter case, each process group will launch only one instance of the external QM program and
the parallelization of the QM part of the QM/MM calculations is determined by the settings for the external QM
program.

10.3.2.1. Important notes for system preparation and adQM/MM simulations

At the time of writing (release of AMBER 16) there is only a limited body of experience with adQM/MM
simulations documented in the literature. Running adQM/MM simulations requires careful simulation setup, in
particular regarding the size of the A and T regions. The A region needs to be sufficiently large to correctly describe
the physics of the system of interest. The T region on the other hand needs to be sufficiently large to minimize force
interpolation errors between the QM and MM regions. Since the cost of an adQM/MM simulation scales linearly
with the number of molecules in the T region, a tradeoff between accuracy and cost often needs to be made. This
in turn might lead to simulations that behave nicely for many time steps but eventually experience sudden, large
(unphysical) forces on atoms at the T region boundaries. Similarly, whether it is more appropriate to define the
center of the A region via an atom or the center of mass of the permanent QM region will affect the numerical
stability of a simulation, depending on the particular system. Likewise for determining the distances of the solvent
molecules via an atom or the center of mass of the solvent. In the case of water as solvent, problems can arise due
to autoprotolysis which can lead to the formation of hydroxide and hydronium ions in the A region. Since the MM
force field is not parameterized for hydroxide or hydronium ions, these will experience strong (unphysical) forces
upon entering the T region. Careful monitoring of adQM/MM simulations and a bit of patience is thus advisable.
It is a good idea to monitor the size of the A and T region and to check coordinates of atoms in the QM regions of
all partitionings.

10.3.2.2. Namelist parameters for adaptive solvent QM/MM simulations

Adaptive solvent QM/MM simulations require setting the vsolv variable in the &gmmm namelist and setting
variables in the &vsolv and &adgmmm namelists.

&vsolv namelist parameters The &vsolv namelist contains parameters that describe which solvent molecules
are contained in the A region in addition to the permanent QM region that is defined in the &gmmm namelist. This
namelist can be used without the &adgmmm namelist in a regular QM/MM simulation with sander if the variable
vsolv in the &gmmm namelist is set to 1 instead of 2 or 3 (see 10.1.6). In this case there is no transition region and
solvent molecules entering / leaving the QM region during the simulation would switch abruptly between QM and
MM description. This is not recommended since it will results in large unphysical forces whenever such a switch
occurs. However, this option is useful for post-processing of trajectories with single point QM/MM calculations in
which the solvent molecules closest to the permanent QM region are treated quantum mechanically.

nearest_qgm_solvent_resname Residue name of the solvent that can exchange between QM and MM region
(Default: nearest_qm_solvent_resname = *WAT")

nearest_qgm_solvent Number of solvent molecules in the A region (Default: nearest_qm_solvent = 0)

nearest_qgm_solvent_fqg Frequency of updating of the A region. Should be set to 1 (every MD step) for
adQM/MM simulations. (Default: nearest_qm_solvent_fq = 1)
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nearest_gm_solvent_center_id Determines the atom(s) of the solvent molecules that is used to calculate the

distance to the QM region.
=0 Use the atom that is closest to the QM region. (default)
=-1 Use the center of mass.

> 0 Use this atom number within the solvent residue.

gm_center_atom_id Determines the atom of the permanent QM region that is used to calculate the distance to

verbosity

the solvent molecules.

=0 Use the atom of the permanent QM region that is closest to a solvent molecule. Not supported for
adQM/MM since the radii of the A and T region would remain undefined - a common point of
reference is required for all solvent molecules. Useful only for post-processing of trajectories.
(default)

=-1 Use the center of mass of the permanent QM region.

> 0 Use this atom number. Note that this is an absolute atom number - obviously, you should choose
an atom that is in the permanent QM region.

Controls verbosity of vsolv output in the mdout file.

=0 Standard verbosity. (default)

> 1 Increase verbosity.

&adgmmm namelist parameters If the &gmmm namelist variable vsolv is set to 2 or 3, an adQM/MM simula-
tion with a fixed number of molecules in the A and T regions or fixed size of the A and T regions, respectively, is
requested. Details of the adQM/MM simulation are set in the &adgmmm namelist as follows.

n_partition Defines the number of QM/MM partitions to be used. For vsolv=2 this also determines the number

RA

RT

calc_wbk

verbosity

of solvent molecules in the transition region, which is n_partition - 1. For vsolv=3 it has to be set
to the largest number of QM/MM partitionings that will be encountered for the chosen values of RA
and RT. (Default: n_partition = 1)

Defines the radius Rp of the A region in Angstrom. Only relevant for vsolv=3. Needs to be changed
from the default value and requires setting of RT. (Default: RA =-1.0)

Defines the radius Rt of the T region in Angstrom. Only relevant for vsolv=3. Needs to be changed

from the default value and requires setting of RA. (Default: RT = -1.0)

Controls whether the book-keeping term W is calculated.

=0 Do not calculate W. (default)

=1 Calculate W via one-sided difference approximation (not recommended).

=2 Calculate W via central-difference approximation, see equation 10.23. Requires additional com-
putations for (dis)appearing partitionings. (recommended if W is desired).

Controls verbosity of adQM/MM output in the mdout file.

=0 Standard verbosity. (default)

=1 Increase verbosity - write distances of residues in T region from center of A region to file
adgmmm_res_distances.dat and o, values to file adgqmmm_weights.dat. These files get
overwritten at each program start.

=2 Increase verbosity - write distances and o, values also to the mdout file. Also write A values.

print_gm_coords Controls whether coordinates of the QM atoms in each partitioning are written to file.
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=0 Do not write coordinates. (default)

=1 Write QM coordinates for all QM/MM paritionings in xyz format to files oM _coords.001 etc.
Files are overwritten upon each program call.
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10.4. Adaptive buffered force-mixing QM/MM

10.4.1. Introduction

In hybrid quantum mechanical — molecular mechanical (QM/MM) methods the reactive part of the system (i.e.
where a significant change of the charge density distribution is expected) is described using a quantum mechanical
model while the rest of the system is treated using molecular mechanics. Conventional (“energy-mixing”) QM/MM
methods (convQM/MM) define a unique total energy function for the whole system that consists of three terms:
the energy of the QM model applied to the atoms in the QM region, the energy MM model applied to atoms in the
MM region and the interaction energy between the two regions:

EMMM(OMMM) = EM(QM) + EMM(MM) + EMMM(QM+MM), (10.24)

where the superscript represents the level of theory, while the region to which they are applied are indicated in
parentheses. The coupling between the quantum region and the surrounding atoms (EQMMM(QM+MM)) can
be taken into account in several ways. For example, in the more sophisticated approaches, the effects of the
MM charges are included in the quantum mechanical SCF calculation in the form of an externally applied field.
Given a total energy, performing Hamiltonian or any other standard dynamics is straightforward. However, several
uncontrolled errors could potentially be introduced by such schemes. Representing the environment by a set
of point charges can over-polarise the QM region, and conversely the electrostatic effect of the ever-changing
quantum mechanical charge density on atoms at the edge of the MM region is quite different from what is assumed
when the MM force field parameters are determined. The delicate balance that exists between the various non-
bonded MM terms is therefore no longer maintained across the QM-MM boundary. Furthermore, if adaptivity, i.e.
transitions of atoms between the two regions, is allowed, a new problem appears: in general there can be chemical
potential differences between the QM and MM regions for various species, and this results in a net flow betwen the
regions, leading to unphysical density differences, structure and dynamics. Allowing adaptivity in this sense can
be important when the active region itself is mobile (e.g. penetration, adhesion, crack propagation), or diffusional
processes in the environment are relevant (e.g. water molecules, ions, residues enter and exit the QM region during
the dynamics). To overcome these problems the adaptive buffered “force-mixing” QM/MM (abfQM/MM) method
was introduced [357, 358]. The implementation of abfQM/MM was carried out by Letif Mones (University of
Cambridge) and Gabor Csanyi (University of Cambridge) with help from many others (see the article below).
When using this implementation in your work please cite the following papers:

* Noam Bernstein, Csilla Vérnai, Ivan Solt, Steven A. Winfield, Mike C. Payne, Istvdn Simon, Ménika Fuxre-
iter and Gabor Csanyi, QM/MM simulation of liquid water with an adaptive quantum region, Phys. Chem.
Chem. Phys., 14, 646-656 (2012), DOI: 10.1039/c1cp22600b

¢ Csilla Varnai, Noam Bernstein, Letif Mones and Gabor Csanyi, Tests of an Adaptive QM/MM Calculation
on Free Energy Profiles of Chemical Reactions in Solution, 1J. Phys. Chem. B, 117, 12202-12211 (2013),
DOI: 10.1021/jp405974b

¢ Letif Mones, Andrew Jones, Andreas W. Gotz, Teodoro Laino, Ross C. Walker, Ben Leimkuhler, Gabor
Csanyi and Noam Bernstein, Implementation of the Adaptive Buffered Force QM/MM method into CP2K
and Amber program packages, in preparation.

10.4.2. Technical details of abfQM/MM

In the abfQM/MM method two independent force calculations are performed at each MD step. The first and
more time consuming calculation is an extended conventional QM/MM calculation, which is used for calculating
the forces of atoms treated quantum mechanically during the dynamics. We start with a core QM region, which
comprises atoms that will always be treated quantum mechanically throughout the simulation. This region is
enlarged (using a distance criterion, see below) to obtain the dynamical QM region which contains the atoms that
follow QM forces. The dynamical QM region is surrounded by a buffer region whose size can be determined by
simple force convergence tests [359, 360] and its construction in practice is based on geometrical considerations:
atoms or molecules that are within a specified distance from the dynamical QM region are added to the buffer
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region. From this first calculation only the forces of the atoms in the dynamical QM region are kept and the rest
(namely the forces on atoms in the buffer region) are discarded. The second calculation is used for obtaining good
forces on MM atoms, especially important near the QM/MM boundary. For this, either fully MM representation
of the whole system is used or, alternatively, another QM/MM force calculation, but this time using a smaller
(reduced) QM region consisting of only the atoms in the core QM region. The abfQM/MM method is an abrupt
force mixing method, which means that the forces are not derived from a total energy expression but a simple
combination of the forces of the two calculations described above

FExtended if j s in the dynamical QM region,

10.2
otherwise, (10.25)

F?beM/MM (QM+MM) = { FReduced
1
where the superscripts Extended and Reduced denote that the forces are taken from the first and second calculations
described above, respectively. The selection of the QM and buffer atoms is controlled by distance criteria. Using a
single distance criterion measured from some key atoms in the QM region, however, would lead to rapid fluctuation
in the region definitions because atoms may cross and re-cross repeatedly. To reduce this effect, a hysteretic
algorithm can be applied using an inner (ri,) and an outer (roy) radius [357]. Thus, an MM atom is redesignated
to be QM if its distance measured from the QM region (as defined by a set of atoms always treated quantum
mechanically) is less than ri, and a QM atom is redesignated to be MM if this distance is larger than rqy. Similar
hysteretic algorithms are applied for the definition of the dynamical QM region as well as the buffer region.

The above definitions may lead to QM atoms that have covalent chemical bonds with MM atoms. This is not
necessarily a problem, as these bonded interactions can be treated in several ways from the point of view of carrying
out the the QM/MM calculation (e.g. link atoms, special pseudopotentials, frozen localized orbitals etc.). However,
none of these schemes are general, i.e. cutting some type of QM-MM bonds in this way might not yield reasonable
forces. For example, highly polarized bonds, bonds with bond order larger than 1 and delocalized bonds such as
those in aromatic rings should be protected from being cut. In the conventional, nonadaptive QM/MM scheme it is
easy to handle this problem, because the QM region is specified at the beginning of the simulation and the user can
pick a chemically sensible set of atoms. For our dynamically varying QM (and buffer) regions, chemically sensible
decisions have to be made algorithmically. Our implementation allows the user to specify a list of the breakable
types of bonds which the software then uses to build the regions automatically.

Finally, as in all force mixing schemes, the abfQM/MM scheme uses dynamical forces that are not conservative,
that is they are not the derivatives of a total energy function. This is the price we pay for adaptivity. The noncon-
servative nature of the dynamics necessitates the use of a thermostat to maintain the correct kinetic temperature
throughout the system. The strength of the thermostat we need to use in practice is similar to those that are con-
ventionally used in biomolecular simulations, which suggests that no ill effects will arise purely from the use of a
thermostat — the only caveat is that since the use of a thermostat is mandatory, strictly microcanonical simulations
cannot be performed. A simple Langevin thermostat is not appropriate in the presence of net heat generation (and
would lead to a steady state temperature deviation of several tens of degrees near the QM/MM boundary), so a
special adaptive thermostat (a combination of Langevin and Nose-Hoover thermostats) that is able to maintain the
correct temperature even in the presence of intrinsic heating or cooling is used [361].

10.4.3. Relation to other adaptive QM/MM methods

It is worth noting that the current implementation of abfQM/MM supports the use of several other adaptive
QM/MM methods. For example, setting r_qm_in, r_qm_out, r_buffer_in and r_buffer_out variables to 0 (for
definitions see the next section) leads to the adaptive conventional QM/MM (adconvQM/MM) technique that can be
considered also as the zero limit of the adaptive solvent QM/MM (adQM/MM) method [355] without a transition
region (see also section 10.3). In this case the extended and reduced systems are identical and the dynamics is
propagated by forces of a convQM/MM calculation whose QM region is adaptive. To save computational time for
adconvQM/MM the program first performs the corresponding convQM/MM calculation and then a dummy full
MM calculation whose forces are discarded. Another limit can be obtained when r_buffer_in and r_buffer_out
variables are set to 0 (and all other radii are not). This method can be called unbuffered force mixing QM/MM
(unbuffQM/MM). It has been observed that the applicability of both adconvQM/MM and unbuffQM/MM depends
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on several factors (system, QM method, size of core / gm regions etc.) and it is advised to perform a force
convergence test [359, 360] before using them.

10.4.4. Technical glossary
10.4.4.1. Systems

* extended system: the first (QM/MM) calculation, which is used for calculating the forces on atoms in the
dynamical QM region. To get converged forces on these atoms, a buffer region is added, leading to an
extended QM region.

* reduced system: the second calculation, which is used for obtaining the MM forces. Either a full MM
representation can be used or a QM region that is smaller than the dynamical QM region.

10.4.4.2. Atom types

There are basically four regions in the abfQM/MM method depending on their role during the dynamics: the
core, the gm, the buffer and the mm regions. These sets are disjoint by definition. There are atoms which are
permanent members of a given region and there are others that can change their identity by moving from one
region to another. This section describes the different atom types and also gives their name and id used in the
implementation. Please note the distinction between the labels “QM” and “gm” atoms: the former indicates the
QM region used in the actual extended or reduced QM/MM calculations, while the latter is a label used to describe
those atoms that, together with the core atoms, follow dynamics using quantum mechanical forces.

* core atoms (id = 1-2): those atoms that constitute the QM region for the reduced system calculation. (The
QM atoms in the extended calculation are the core, the gm and buffer atoms together.)

* user specified core atoms (id = 1, tag = CORE_USER): core atoms specified by the user. These atoms are
permanent core atoms during the whole simulation.

— core extension atoms (id = 2, tag = CORE_EXT): core atoms selected by geometrical criteria around
the user specified core atoms. These atoms belong temporarily to the core region.

atom; € {core extension atoms} <= atom; = f(Feore_in, core_out, { User specified core})

{core atoms} = {user specified core atoms} | J{core extension atoms}

e gm atoms (id = 3-4): atoms, whose QM forces are used in the MD simulation similarly to core atoms but
gm atoms are excluded from the QM region in the reduced calculation. Their forces are calculated in the
extended QM/MM calculation.

— user specified gm atoms (id = 3, tag = QM_USER): gm atoms specified by the user. These atoms are
gm atoms during the whole simulation or occasionally can become core extension atoms.

— gm extension atoms (id = 4, tag = QM_EXT): gm atoms selected by geometrical criteria around the
core and user specified gm atoms. These atoms belong temporarily to the gm region.

atom; € {gm extension atoms} <= atom; = f(rqm_in,qm_out, {user specified gm}|J{core atoms})

{gm atoms} = {user specified gm atoms} | J{gm extension atoms}

* buffer atoms (id = 5-6): these atoms are in the buffer region. Although they are treated as QM atoms in the
extended calculation, forces on them from this calculation are discarded and they move with forces coming
from the reduced calculation in which they are treated with MM.

— user specified buffer atoms (id = 5, tag = BUFFER_USER): buffer atoms specified by the user. These
atoms are permanent buffer atoms during the whole simulation or occasionally can become gm or even
core extension atoms.
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— buffer extension atoms (id = 6, tag = BUFFER_EXT): buffer atoms selected by geometrical criteria
around the gm and core atoms. These atoms belong temporarily to the buffer region.

atom; € {buffer extension atoms} <= arom; = f(Fouffer in, Fbuffer_out; {qm atoms} J {core atoms})

{buffer atoms} = {user specified buffer atoms} J{buffer extension atoms}

* mm atoms (id = 7, tag = MM): they are MM atoms in both the extended and reduced calculations. For the
MD the forces are obtained from the reduced calculation.

¢ QM atom selections in the reduced and extended QM/MM calculations:

{QM atoms in the reduced system} = {core atoms}
{QM atoms in the extended system} = {core atoms} | J{gm atoms} | J{buffer atoms}

10.4.5. Namelist parameters for adaptive buffer-forced QMI/MM simulations

The abfQM/MM implementation requires only two calculations for each MD step, which are performed se-
quentially (first the computationally more expensive extended then the reduced calculations are carried out). Con-
sequently, unlike adaptive solvent QM/MM (adQM/MM, section 10.3) the subroutines of abfQM/MM are called
directly from sander and no groupfile is needed. All abfQM/MM related variables should be specified in the
&gmmm namelist. An example of an abfQM/MM dynamics is shown below:

# mdin file - example for adaptive buffered-force QM/MM dynamics

&cntrl
ntt=6,

ifgnt=1,

/

&gmmm
abfgqmmm=1,
r_core_in=3.0,
r_core_out=3.5,
r_qgm_in=3.0,
r_gm out=3.5,
r_buffer in=4.0,
r_buffer out=4.5,
coremask=':1",
gmmask="':112,
buffermask="'",
corecharge=0,
gmcharge=0,
buffercharge=0,

1129,

activate abf

inner radius for

outer radius for

inner radius for

outer radius for

inner radius for

outer radius for
core region mask

2395°',

! adaptive Langevin thermostat is used

oM/MM

extended core region
extended core region
extended gm region
extended gm region
buffer region
buffer region

! gm region mask

buffer region mask

core region charge

gm region charge

buffer region charge

10.4.5.1. Basic namelist parameters

abfgmmm

plied).

coremask

1 activates the adaptive buffered force-mixing method, default is 0 (no abf~-QM/MM method is ap-

core atom list specification (in ambmask format). Optional, by default (when it is missing or core-

mask="") it is an empty set and in this case the reduced system is the full MM representation. Note
that at least one of the coremask or gqmmask sets has to be specified.
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qmmask gm atom list specification (in ambmask format). Optional, by default (when it is missing or gm-
mask="") it is an empty set and in this case only atoms in the core region will be treated as QM
atoms during the dynamics. Note that at least one of the coremask or gmmask sets has to be speci-
fied.

buffermask buffer atom list specification (in ambmask format). Optional, by default (when it is missing or
buffermask="") it is an empty set.

corecharge Total charge of core atom list defined in coremask, default is O.

amcharge  Total charge of qm atom list defined in gqmmask, default is 0.

buffercharge Total charge of buffer atom list defined in buffermask, default is O.

r_core_in Inner radius for determining core extension region around user specified core atoms. Default is 0.

r_core_out Outer radius for determining core extension region around the user specified core atoms. Default is
the value specified for r_core_in. If r_core_out < r_core_in then r_core_out = r_core_in.

r_gm_in Inner radius for determining qm extension region around the core and user specified gm atoms.
Default is 0.

r_core_out Outer radius for determining gm extension region around the core and user specified qm atoms.
Default is the value specified for r_qm_in. If r_qm_out < r_qm_in then r_qm_out = r_qm_in.

r_buffer_in Inner radius for determining buffer extension region around the qm and core atoms. Default is 0.

r_core_out Outer radius for determining buffer extension region around the qm and core atoms. Default is the
value specified for r_buffer_in. If r_buffer_out < r_buffer_in then r_buffer_out = r_buffer_in.

10.4.5.2. Adaptive thermostats’ namelist parameters

ntt Besides the original thermostats in sander, new adaptive ones are also introduced to be able to
absorb the heat production due to the nonconservative force-mixing dynamics. The correspond-
ing thermostat can be activated using the ntt command. In general, 5 activates the Nose—Hoover
(chain)-Langevin, 6 the adaptive Langevin, 7 the adaptive Nose-Hoover chain and 8 the adaptive
Nose-Hoover (chain)-Langevin thermostat. For adaptive QM/MM ntt=6 or 8 should be used.

gamma_1n  Collision frequency in ps~!

nchain Number of thermostats in each Nose—Hoover chain of thermostats (default is 1)

10.4.5.3. Miscellaneous namelist parameters

selection_type Type of selection of the different regions. Default is the atom—atom distance based selection
(selection_type = 1). In this case a given atom is going to belong to an outer region if the distance
between the atom in question and any atom in the inner region is less or equal than the corresponding
criterion. Option 2 is the flexible sphere selection: for each inner region the radius of the region is
calculated (as the largest distance between the centre of mass of the region and any atom belonging
to that region), and the distance between the edge of the inner region and the atom in question
will determine weather the atom belongs to the outer region or not. Option 3 is fixed sphere based
selection: it is the same as option 2 except that only the edge of the innermost region is calculated
based on its atoms and then all the other region’s borders are calculated geometrically as concentric
spheres. For option 2 and 3 the radii of spheres are calculated using the centre region, which is either
defined by the user (centermask) or it is the coremask if specified, otherwise it is gmmask. Note
that option 2 and 3 selects significantly larger number of atoms than option 1.
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initial_selection_type Type of initial selection type. This command controls the initial selection if not an
abfgmmm restart is performed (i.e. read_idrst_file is not specified). Default is 0, which is the
middle sphere selection (i.e. the mean of the corresponding inner and outer radii). Option -1 uses
the inner and option 1 applies the outer radius for the first selection.

center_type Type of calculation of center for selection_type = 2 and 3. Default is center of mass (option 1),
while option 2 is geometric center.

gamma_1n_om Collision frequency of actual core and gm atoms in ps~' when adaptive massive Langevin thermo-
stat is applied. Default value is the same as gamma_In defined in &cntrl session.

mom_cons_type Type of force correction for momentum conservation. Default is 1 when the extra force is dis-
tributed among the corresponding atoms as equal accelerations. Option 2 applies equal forces on
each atom. Options -1/-2 apply an acceleration/force proportional to the absolute value of the cur-
rent acceleration/force of each atom. The region of atoms where the force correction is distributed is
specified by mom_cons_region. Option 0 does not apply momentum conservation.

mom_cons_region Specifies the region where the force correction for momentum conservation is distributed.
Default is 1 that distributes the correction among only current core+gm atoms, option 2 distributes
it among current core+gm+buffer atoms and option 3 distributes the forces on all atoms. When
mom_cons_region = ( the distribution is applied only among core atoms.

fix_atom_list >0 activates the fixed atom list method, default is 0. In fixed atom list mode the different regions
are extended only by those solvent molecules that satisfy the given geometrical criteria and no solute
atoms will be selected besides the user specified ones in the coremask, gqmmask and buffermask.
Useful when only solvent exchange is expected.

solvent_atom_number Number of atoms in solvent molecule for fixed atom list mode (fix_atom_list > 0), default
is 3. Defining this variable is important when the solvent is other than water and the solvent molecule
contains more (or less) than 3 atoms.

centermask Centre region atom list specification. Optional, if not defined then it is equal to coremask. If
coremask is neither specified then centermask equals to gmmask.

oxidation_number_list_file File name of oxidation numbers. Each line in the file must be either a comment
(starting by ’!” or ’#’) or a triplet: RES ATOM OXID, where RES can be ’all’ (specification for all
residues), "atom’ (specification for a given atom), residue name or residue index. If RES # ’atom’
then ATOM is the atom type name that can be specified completely (e.g. HE2) or partially using **’
(e.g. H* or HE*). If RES = "atom’ then ATOM is the atom index in the topology. OXID is the integer
oxidation number. Since different specifications can refer to the same atom, there is a hierarchy of
the assignment and the later step always overwrites the previous one: 1. RES = all’ with partial
atom type specification (in the order of X* — XY* — XYZ* ), 2. RES = ’all’ with complete
atom type specification (XYZ1), 3. specified residue type with partial atom type specification, 4.
specified residue type with complete atom type specification, 5. residue index with partial atom type
specification, 6. residue index with complete atom type specification, 7. atom index specification.

ext_coremask_subset Possible core extension atom set. If specified only those atoms will be chosen according
to the corresponding geometrical criteria that can be also found in this list (in the case of fixed atom
list method solvent residues having at least one atom in the set will be chosen). If not defined then
by default it is the all atom list.

ext_agmmask_subset Possible qm extension atom set. If specified only those atoms will be chosen according to
the corresponding geometrical criteria that can be also found in this list (in the case of fixed atom list
method solvent residues having at least one atom in the set will be chosen). If not defined then by
default it is the all atom list.
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ext_buffermask_subset Possible buffer extension atom set. If specified only those atoms will be chosen ac-

cording to the corresponding geometrical criteria that can be also found in this list(in the case of
fixed atom list method solvent residues having at least one atom in the set will be chosen). If not
defined then by default it is the all atom list.

cut_bond_list_file File name of breakable bonds for intelligent termination of different regions

(core/qm/buffer). Each line in the file must be either a comment (starting by ’!” or ’#’) or a triplet:
ATOM1 ARROW ATOM?2. ATOMI and ATOM?2 are both either atom types or atom indexes. AR-
ROW specifies the direction of bond breaking: if it is *<=>" then the bond can be split from both
directions, if it is =>" or *<= then the bond can be cut only from ATOM1 or ATOM?2 directions,
respectively.

max_bonds_per_atom Maximum number of ligands around any atom in the system. This controls the size of

arrays for the intelligent termination. Default is 4 that is good for most biological systems. If there
are atoms having more than 4 ligands then adjustment is required.

n_max_recursive Intelligent termination scheme is a recursive subroutine to get a fast and reliable performance.

However, it may happen that according to the user specified breakable bonds a very large bond
network will be chosen for a given region. To avoid it this variable can be used to control the
maximum number of iterations: when the number of iteration reaches the value of n_max_recursive
the program terminates. Default value is 10000.

min_heavy_mass To keep low the number of atoms in each extension region, by default the geometrical region

pdb_file

ntwpdb

selection algorithm measures the distances between only heavy atoms, and hydrogen atoms are as-
signed in a second step according to the heavy atoms they are bonded to. To extend the distance
based selection for H atoms as well, decrease the value from its default 4.0 below the atomic mass
of hydrogen (e.g. 0.0).

File name of a special abfQM/MM related pdb file generated during the dynamics. The first 8
columns have the standard pdb format  ATOM’, atom index, atom name, residue name, residue
index, Cartesian coordinates of atom), 9th column is the oxidation number, 10th and 11th columns
are the id number and tag according to abfQM/MM implementation, respectively, and the possible
following columns include the atom indexes of MM atoms having direct bond to the given atom
treated as QM atom in the extended calculation. Default name is abfgmmm.pdb.

Frequency of printing out abfQM/MM information into pdb_file. Default value is O (no printing).
Using ntwpdb < 0 allows the user to perform a selection test. In this case neither dynamical nor
even point calculations are performed, the program terminates after printing the pdb file out.

read_idrst_file Name of abfQM/MM atom id restart file used for restarting simulations. In the beginning of

the simulation besides the user specified atoms those become also member of a given region that
are within the outer radius. For a given region if the outer radius differs from the inner one, in the
beginning of the dynamics the number of atoms will change until it reaches a dynamical equilibrium
fluctuation. To avoid this natural transient period in a consecutive restart calculation one can use the
read_idrst_file generated in the previous run telling the program the abfQM/MM atom id’s of the
restart configuration. Note that the safe use of read_idrst_file requires the same region specifications
as in the previous run.

write_idrst_file Name of abfQM/MM atom id restart file generated during the run. Default name of the file

ntwidrst

hot_spot

is abfgmmm.idrst.
Frequency of printing the abfQM/MM atom id restart file out. Default is O (no printing).

1 activates the hot spot-like adaptive calculation [362] in which the forces of atoms in the buffer
region are linear combinations of the forces obtained from the extended and reduced calculations
using a smoothing function. Default is O (no hot spot-like calculation is performed).
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10. QM/MM calculations

10.5. SEBOMD: SemiEmpirical Born-Oppenheimer Molecular Dynamics

The sander program provides the ability to run SEBOMD (SemiEmpirical Born-Oppenheimer Molecular Dy-
namics) simulations. During a SEBOMD simulation, all atoms are considered as quantum atoms within the NDDO
semiempirical approach (e.g., AM1, PM3, etc). Therefore, unlike QM/MM methods, there is no link atom, no fron-
tier bond, no interaction between any QM and MM atoms (since there is no MM atom). Another consequence of
SEBOMD simulations is that the computational time requested to compute energy and forces at each step of a
molecular dynamics run can be (very) important. To allow for the computation of “large” systems (i.e., up to a
couple of thousands of atoms), an optional linear scaling divide and conquer strategy is implemented[363, 364].
Periodic boundary conditions with long-range electrostatic interactions through Ewald summation can also be ap-
plied. A detailed explanation of the implementation can be found in ref [365]. If you publish work that results
from using the SEBOMD in AMBER, please cite the following work:

* Antoine Marion, Hatice Gokcan, and Gerald Monard, SemiEmpirical Born-Oppenheimer Molecular Dy-
namics (SEBOMD) Within the Amber Biomolecular Package, J. Chem. Inf. Model., 59, 206-214 (2019),
DOI: 10.1021/acs.jcim.8b00605

The SEBOMD code implemented in sander is originated from the DivCon program developed in the Merz group
while at Pennsylvania State University:

» Steve L. Dixon, Arjan van der Vaart, Valentin Gogonea, James J. Vincent, Edward N. Brothers, Lance M.
Westerhoff and Kenneth M. Merz, Jr. DivCon99, The Pennsylvania State University, 1999.

Major contributors to the SEBOMD interface are as follows:
* Maintenance, code refactoring, debugging, testing by Gerald Monard
* Original roar interface by Gerald Monard and Arjan van der Vaart[366]

* Original sander port by Jennifer Thomas

Ewald and Particle Mesh Ewald summation by Laurent Teixidor

PIF and MAIS semiempirical correction implementation, peptidic corrections by Antoine Marion[367]

 Divide & Conquer parallel speed enhancement by Hatice Gokcan

10.5.1. Functionalities and limitations

The current SEBOMD implementation allows to run sander simulations with the following functionalities:
* molecular dynamics or energy minimization (imin = 0, 1, or 5)

* gas phase or periodic boundary conditions (as defined in the topology file), no support for Generalized Born
solvent effect

» For PBC runs, different long range interactions handlers are possible: none, external Particle Mesh Ewald
using MM point charges as defined in the topology file, or direct Mulliken Ewald summation.

* temperature regulation as implemented in sander (ntt flag)

e pressure regulation: only barostat = 2 is supported (Monte Carlo barostat)

¢ parallel implemention (sander.MPI): only the Divide & Conquer approach can be used (method > 0)
¢ available hamiltonians: MNDO, AM1, AM1/d-PhoT, RM1, PM3, PM3/PDDG

¢ available corrections to PM3 hamiltonians: MAIS and PIF
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* as d-orbitals are not yet implemented in the SEBOMD code, only the following elements are implemented:
H,C,N, O, P, S, F, Cl, Br, I (except for AM1/d-PhoT for which the P element is not yet available because it
requires the d-orbital implementation)

¢ maximum number of atoms: 1000; maximum number of residues: 1000
Note: the SEBOMD code currently uses a static memory allocation as defined in SAMBERHOME/Amber-
Tools/src/sebomd/sebomd.dim. Users wishing to simulation bigger systems will have to modify the SE-

BOMD

source code and recompile.

10.5.2. Sample SEBOMD input

To run a SEBOMD calculation, a specific namelist (&sebomd) must be used. It contains all the necessary
information for the run. To inform sander that a SEBOMD simulation must be run, two steps are required: 1)
switch the ifqnt keyword to 1 (as for a QM/MM calculation); 2) define the qm_theory keyword in the &gmmm
namelist to ’'SEBOMD’. Here is a sample mdin file for SEBOMD:

! example input for SEBOMD simulation

&cntrl
ifgnt = 1, ! switch on QM calculation
/
&gmmm
gm_theory = 'SEBOMD’, ! use specific SEBOMD routines
/
&sebomd
hamiltonian = 'AM1’, ! Use the AMl semiempirical hamiltonian
charge = 0, ! total charge on the (full) system is 0
/

10.5.3. &sebomd namelist variables

charge

method

ncore

dbuffl

= Integer Net charge of the system (Default = 0).
Note: SEBOMD only supports closed shell molecular systems.

Algorithm for the SCF computation.

=0 (Default) Standard closed-shell algorithm: the Fock matrix is diagonalized at each SCF iteration.
(Note: all subsetting parameters are ignored, only one subsystem containing all the atoms will
be generated).

=1 Use linear scaling divide & conquer SCF algorithm. Buffer regions must be specified (dbuffl
and dbuff2). Subsystems are built on an atom-based principle.

=2 Use linear scaling divide & conquer SCF algorithm. Buffer regions must be specified (dbuffl
and dbuff2). Subsystems are built on an residue-based principle (recommended option over
method=1).

=3 Use linear scaling divide & conquer SCF algorithm. Buffer regions must be specified (dbuffl
and dbuff2). Subsystems are built on an heavy-atom-based principle: each heavy atom plus
its hydrogens define one subsystem and there are as many subsystems as the number of non-
hydrogen atoms.

= Integer When using divide and conquer method (method > 0): specify the number of subsystems
used to build the core. (default: ncore = 1)

= Float When using divide and conquer method (method > 0): specify the extent of the first buffer
region from the core in A. (default: dbuffl = 6.0)
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10. QM/MM calculations

dbuff2

hamiltonian Semiempirical hamiltonian to be used for energy and force calculations. All atoms within the

modif

196

= Float When using divide and conquer method (method > 0): specify the extent of the second buffer

region from the core in A. (default: dbuff2 = 0.0)

molecular system will be treated at this level of theory. Available semiempirical hamiltonians:

MNDO Request the use of MNDO semiempirical hamiltonian[314]

AM1 Request the use of AM1 semiempirical hamiltonian[312]

PM3 Request the use of PM3 semiempirical hamiltonian (default)[311]
PM3PDDG Request the use of PM3/PDDG semiempirical hamiltonian[315]
RM1 Request the use of RM1 semiempirical hamiltonian[313]

AM1/d-PhoT Request the use of AM1/d-PhoT semiempirical hamiltonian[323]

(Note: phosphorous (P) element is not yet implemented, therefore the AM1/d-PhoT hamilto-

nian is available only for H, C, N, O, S, F, Cl, Br and I elements)

Modification/corrections to the semiempirical energy. Some semiempirical methods have been ex-
tended to improve results, mostly in the case of intermolecular interactions. For the moment only

PM3 corrections to the energy are available. Possible values are:

none (default) no correction

PIF2 PM3 hamiltonian is modified for intermolecular core-core interactions according to the work

of Bernal-Uruchurtu et al. and Harb et al. [318, 368-370]. This correction can be applied
when using PM3 hamiltonian with a molecular system composed of one (or more) organic
molecule(s) in interaction with explicit water molecules. Intermolecular water-water core-core
interactions are computed using specific PM3-PIF parameters for aqueous solvent, while in-
termolecular organic-organic and organic-water intermolecular core-core interactions are com-
puted using another specific set of PM3-PIF parameters. The intermolecular PM3-PIF (PIF2
version) parameters are available only for the following interactions:

Water Organic

Hw Ow | H C N O <l

Hw | v v oIV v v v v
Oow | vV v IV vV
H v v v v v vV

C v v v oo v v o

N v v IV v v v o

o v v v v v vV

Cl | v vV IV o o Vv o

(v: intermolecular interaction parameters between the two considered atom types are available;
&: no intermolecular parameter available)

PIF3 PIF3 is an extension of the PIF2 parameters in which organic hydrogens are distinguished be-

tween “hydrophylic” hydrogens and “hydrophobic” hydrogens[367]. In the case of hydrophylic
hydrogens, intermolecular interactions between the hydrogen atom and water molecules are
computed using PIF2 parameters. In the case of hydrophobic hydrogens, intermolecular in-
teractions between these hydrogen atoms and water molecules are computed using specific
parameters. The distinction between hydrophobic and hydrophylic hydrogens is performed
using the atom types as specified in the topology file. Hydrogen atom types which are consid-
ered as hydrophylic are: H, HO, HS, HW, hn, ho, hp, hs, hw, Ho, hO, hN, and
hR. Other hydrogen atom types are considered as hydrophobic.

MAIS1 MALIS extension of the PM3 hamiltonian in which intramolecular and intermolecular core-

core functions are replaced by specific MAIS functions. This option corresponds to the initial
work of Bernal-Uruchurtu et al.[317]. Parameters are only available for liquid water (H and O
elements).



longrange

dpmax

fullsct

ipolyn

screen

lambda

charge_out

10.5. SEBOMD: SemiEmpirical Born-Oppenheimer Molecular Dynamics

MAIS2 Second version of the MAIS extension. Parameters are only available for H, O, and CI
elements[318].

Select the type of long range interaction when using periodic boundary conditions:

=0 (Default) No long range interaction. Only the minimum image convention.

=1 Perform PME (Particle Mesh Ewald) summation using constant atomic charges extracted from
the topology file.

=2 Perform an Ewald summation using Mulliken atomic charges extracted from the semiempirical
wavefunction. Long-range Ewald Mulliken charge effects are incorporated in the Fock matrix
of the system to polarize the wavefunction.

SCF convergence criteria on the density matrix:

= 1e-7 (Default) SCF is considered as converged when density matrix elements between two con-
secutive SCF steps have not changed more than dpmax. The default value of 1e-7 ensures the
conservation of the total energy during NVE simulations. Larger values will speed-up calcu-
lations by using less SCF steps but the total energy may not be conserved during molecular
dynamics.

Option to enable pseudo-diagonalization routines

=0 enable pseudo-diagonalization routine when possible. This can speed-up SCF calculations. (de-
fault)

=1 turn off pseudo-diagonalization. Full diagonalization of the Fock matrix is performed at each

iteration of the SCF cycle.

Option to activate polynomial interpolation of the guess density matrix

=0 Use converged density matrix of the previous step as initial (guess) density matrix for the current
step. Recommended option for minimization.

=1 Use polynomial interpolation of the density matrix elements from the last three steps as initial
(guess) density matrix for the current step. Recommended option for molecular dynamics runs.
(default)

verbosity option for SEBOMD calculations

=0 minimum output. (default)
=1 output semiempirical energy details at each step
=2 output semiempirical energy details + the composition of all subsystems when using method >

0.

= Float (default 1.0) Enable the computation of a mixed energy value between SEBOMD and full
MM computations. If lambda # 1.0, in addition to a semiempirical calculation, the energy of the full
system is evaluated at the MM level. Then energy and forces are mixed according to:

Epot = AE(SEBOMD) + (1 —A)E(MM)
Since, sometimes, semiempirical potential energy surfaces are (very) different from MM surface, the
use of the lambda keyword permits to equilibrate MD more easily. For example, from an equilibrated

MM system, it is possible to run several SEBOMD simulations using different lambda values from
0.0 (full MM energy) to 1.0 (full QM energy) to obtain an equilibrated SEBOMD simulation.

Filename used to save atomic charges. Default = ’sebomd.chg’
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ntwc

peptcorr

peptk

198

Every ntwc steps, the (Mulliken) atomic charges will be written to the charge_out file. If ntwc = 0,
no atomic charge file will be written. Default = 0.

The format of the charge_out file is the following: every ntwc steps, the energy of the system is first
written, then one line per atom is written, containing the X, y, z coordinates and the Mulliken atomic
charge of the atom.

flag to apply force field corrections on peptidic bonds

Some semiempirical methods do not correctly describe peptidic bond properties, leading to a pyrami-
dal peptide bond nitrogen. An empirical force field correction can be applied to force the planearity
of a peptide bond[371].

=0 no peptidic correction. (default)

=1 apply peptidic correction (see Ludwig et al. for details[371])

= Float The force constant of the peptidic correction (in kcal/mol).
AMI1 default value: peptk = 5.9864

PM3 default value: peptk = 9.8526

MNDO default value: peptk = 6.1737



11. Using energies and forces from an external
library

From Amber20 on, it is possible to run simulations where the energies and forces are computed from an
external library. This allows the use of Amber features like restraints or REMD during the simulations, and
the use of AmberTools like CPPTRAJ for the analyses of the output files. The feature of calling external li-
braries is available for both sander and pmemd, with serial, MPI, and CUDA codes (note: only regular MD
simulations can be done with the CUDA code at the moment). Currently, the only external library that can be
called is MBX, a software developed by the Paesani group at UCSD that allows calculations with the MB-pol
model (http://paesanigroup.ucsd.edu/software/mbx.html). However, other external libraries can be eas-
ily added into the Amber’s source code (see $AMBERHOME/src/pmemd/src/external.FO0 for pmemd and $AM-
BERHOME/AmberTools/src/sander/external.F90 for sander).

In order to make use of an external library from Amber, the following steps need to be executed:

1. Add -DCMAKE_PREFIX_PATH=[path to where you installed the external library] into your
cmake command at $AMBERHOME /build/run_cmake

2. (Re)compile Amber

3. Add the flag iextpot=1 into the main namelist (called scntrl) in your mdin file. If you don’t set iextpot
or if you set iextpot=0, then you will perform the simulation with the force field

4. Add a new namelist called sextpot into the mdin file. This namelist might have flags specific to a given
external library. For MBX, this is an example:

&extpot
extprog='mbx’,
json='mbx. json’,

/

If installing Amber using the old (legacy) build system (see section 2.5), replace the first step above by the follow-
ing:

1. Copy the portable library lib*so file from the external library into SAMBERHOME/1ib
2. Configure Amber with the external library. Exemple: . /configure -mbx [additional options] gnu

Then proceed with the remaining steps as stated above.
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12. Preparing PDB Files

The only required or useful data in a PDB file to set up AMBER simulations are: atom names, residue names,
and maybe chain identifiers (if more than one chain is present), and the coordinates of heavy atoms. Non-protein
structures (especially low-molecular-weight ligands) will cause problems unless extra libraries are loaded;water
and monatomic ions are generally recognized if their names in the PDB file correspond to the internal names in the
AMBER libraries.

The upshot is that most PDB files require some modification before being used in Amber. Most of the
recommended steps given below can be achieved with the pdb4amber program with the reduce option:

pdb4amber -i orig.pdb -o new.pdb --reduce --dry

This converts the original pdb file into one likely to be more suitable for input into LEaP. But these programs
(which are described in Sections 12.4 and 12.5 below) cannot anticipate all situations, so you should still examine
the output pdb file to consider the points below.

12.1. Cleaning up Protein PDB Files for AMBER

This is a crucial step in the preparation and many potential problems and subsequent errors arise from omiting
this step! (But also note that these are guidelines for beginners: there are certainly circumstances where you may
wish to modify the ideas presented here.)

* Analyze the PDB file visually in any viewer that can represent (and maybe modify) the file. Alternatively,
use a text editor. Delete all parts which are judged irrelevant for the simulation. Be aware that anything not
protein or water will require you to prepare and load extra library files.

e If the x-ray unit cell in the PDB file contains more than one image, choose the entity you want to use and
delete the other(s).

* If there is a ligand, save it as an MDL standard data file (SDF). Many software packages are able to do this
directly. You may also save the ligand in PDB format and then use some other tools later to convert it into a
decent SDF file (including correct bond order and all hydrogens). It is crucial to keep the coordinates
of its heavy atoms at their original location. Then delete it from the PDB file. The ligand must treated
separately later.

* Delete all water molecules that are not considered relevant. Some waters might be essential for ligand
binding. If those waters are kept, they should be made part of the receptor (as distinct "residues"), not of the
ligand. LEaP recognizes water if the residue name is WAT or HOH. In later simulations, they may have to
be tethered (more or less strongly) to their original positions to prevent them from "evaporating".

* Apply the same delete procedure to ions, co-factors, and other stuff that has no special relevance for the
planned simulation.

¢ Get rid off all protein (or peptide) hydrogens that are explicitly expressed in the PDB file. The reduce
and LEaP utilities adds hydrogens automatically with predefined names. Having hydrogens in PDB files
with names that LEaP does not recognize within its residue libraries leads to a total mess.

* Eventually, remove also all connectivity records. These are mostly referring to ligands, or, in some cases,
to disulfide links. The latter should be explicitly re-connected (see later) without relying on connectivity
records in the PDB file.
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* The final PDB file of the protein should only contain unique locations for heavy atoms of amino acids (and
maybe oxygens of specific water molecules). (In some PDB files, the same amino acid may be represented
by different states (conformations). You must decide which unique location you want to use later in the
simulations. If you don’t do anything, Amber will use the “A” conformation, which is generally the most
highly occupied one.) Missing atoms in amino acids are mostly allowed since LEaP can rebuild them if the
residue names are correct and if the atoms already present have correct names also.

¢ Make use of "TER'" records to separate parts in the PDB file which are not connected covalently. This
is especially important in protein structures in which parts are missing (gaps). Not separating the loose ends
by a "TER" record may lead to strange (and wrong) behavior in LEaP or later in the simulations. Apply the
same rule to individual water molecules which you want to keep and separate each water by a "TER" record.

12.2. Residue naming conventions

Tautomeric and protonation states are not rendered in PDB files. If a defined state for a residue is required, its
name in the PDB file must reflect the choice. The following subsections deal with these cases. Important: if you
change a residue name in a PDB file, make sure to change it for all atoms of that residue!

Note also that PDB files written by LEaP will keep the "special" names, which sometimes leads to annoying
effects in software packages which are not prepared for amino acids called HIE, HIP, CYX, and alike. You might
consider to change these names back to the standard prior to using these PDB files in other software packages. You
can also use the “-bres” option in ambpdb to do that.

Histidine can exist in three forms (8, €, and protonated). The PDB file must reflect the choice of the user.
In the current versions of LEaP command files included with AMBER, e-histidine is the default, i.e., a
"HIS" residue in a PDB file will be translated automatically to HIE (for e-histidine). If the residue is called
"HID" in the PDB file, the resulting residue for AMBER will become &-histidine, while "HIP" will yield the
protonated form.

Cysteine can exist in free form or as part of a disulfide bridge. PDB residues named "CYS" are automatically
converted into a free cysteine with a SH side chain end. If the cysteine is known to be in a S-S bridge, the
residue name in the PDB file must be "CYX". In that case, no hydrogen is automatically added to the side
chain which ends in a bare sulfur. However, S-S bonds to pairing cysteines are not automatically made but
must be specified by the user.

Asp,Glu,Lys Sometimes the usually charged residues aspartate "ASP", glutamate "GLU", and lysine "LYS" might
have to be used in their uncharged form. The residue names must then be changed to "ASH", "GLH", and
"LYN", respectively. A neutral form of arginine is not foreseen in AMBER (as the pKa of arginine is around
12, it is always considered protonated).

Terminals: ACE, NHE, NME There are special N- and C-terminal cap residues which can be used to neutralize
the N- and C-terminal in peptide chains when the defaults (NH3+ for the N-terminal and COO~ for the
C-terminal) are not appropriate.

The "ACE" residue [—C(= O) — CHj3] can be used to cap the N-terminal. The PDB entry of the capping

residue ACE must be:

ATOM 1 CH3 ACE resnumber X y z
ATOM 2 C ACE resnumber x N4 z
ATOM 3 0 ACE resnumber x y z

Note the atom name "CH3" for this special carbon: another name is not allowed. Hydrogens should be
omitted. They are automatically added if the residue name and the heavy atom names are correct.

For capping the C-terminus, two possibilities are given. The first one is a simple NH; termination giving
[C(= O) — NH,]. This residue is called "NHE" in the PDB file and consists of a single atom to be named N:
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(ATOM 1 N NHE resnumber x N z ]

\

The second possible C-terminal cap is NH — CH3, resulting in [C(= O) — NH — CH3] at the C-terminal. Its
entry in the PDB file must have the residue name "NME" and has the following PDB entry:

ATOM 1 N NME resnumber x y z
ATOM 2 CH3 NME resnumber X y z

As above for "ACE", the atom name for the carbon must be "CH3". "NHE" and "NME" residues are
automatically completed with hydrogens. Do not enter them explicitly.

The "ACE" residue should be the first residue in a chain (strand) while "NHE" or "NME" should be the last.
If cap residues are used to terminate gaps in incomplete protein chains, they must appear at the exact gap
location, respecting N-terminal and C-terminal order. Gaps must be separated by a "TER" record in the PDB
file. See section 12.3.

12.3. Chains, Residue Numbering, Missing Residues

* AMBER preparation modules assume that residues in a PDB file are connected and appear sequentially in

the file. If not covalently connected (i.e., linked by an amide bond), the residues must be separated by "TER"
records in the PDB file. (Alternatively, the chainid must change on going from one chain to the next chain.)
Thus for example, a protein consisting of two chains should have a "TER" record after the final residue of
the first chain. Similarly, if residues are missing (e.g., not detected in x-ray, or cut by the user), the gap
should also be separated by a "TER" record. Terminal residues will be charged by default. If the user wants
to avoid this (especially for gaps), these residues should be capped (by ACE and NHE or NME).

In general, LEaP and tools using it refer to the original input residue numbers. Thus, residues are numbered
(rather "named") according to the original PDB file for special commands like the disulfide connections.

In output files from LEaP, residues will always be numbered starting from 1, irrespective of the original
numbering. Gaps are not considered either. Thus if a protein chain runs from 21 to 80, with residues 31 to
40 (i.e., 10 residues) missing, the final numbering of residues will run from 1 to 50.

The final residue numbers are the ones that must be used in later simulations to refer to individual residues
via AMBER masks or NAB atom expressions. For example, if a protein chain with residues from 30 to 110
is prepared for AMBER simulations, the final numbering will go from 1 to 81. If the original residues 35
to 40 should be fixed or tethered, the actual residues to be specified are 6 to 11. This can lead to serious
errors. So be careful about residue numbers. The script pytleap described later will always generate a new
PDB file with exact AMBER residue numbering and atom names. This PDB file should be used as reference
throughout all subsequent AMBER simulations. Above all, when using atom masks or atom expressions (see
Appendix 21), always check that they really refer to the desired atoms before running lengthy simulations.
Fixing or tethering wrong atoms are a common error which may easily go unnoticed.

12.4. pdb4amber

pdb4amber analyses PDB files and cleans them for further usage, especially with the LEaP programs of Amber.
This utility was originally written by Romain Wolf, but later modified (mainly by Hai Nguyen) to use the parmed
tools under the hood.

Typing pdb4amber on the command line without options (or followed by -h) produces the following help mes-

sage:

usage: pdb4amber [-h] [-i FILE] [-o FILE] [-y] [-d] [-s STRIP_ATOM_ MASK]
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[-m MUTATION_STRING] [-p] [--constantph] [--most-populous]
[--keep-altlocs] [--reduce] [--no-reduce-db] [--pdbid]



[-—add-missing—-atoms] [-—-model MODEL] [-1 FILE] [-v]

[--leap
[input]

positional arguments:
input

optional arguments:

-h, —--help

-i FILE, --in FILE
-o FILE, --out FILE
-y, —-nohyd

-d, —--dry

-s STRIP_ATOM MASK, --

-m MUTATION_STRING, —-—

-p, —-prot
——constantph
—-most-populous
—--keep-altlocs
——reduce
—-no-reduce-db

——pdbid
—--add-missing-atoms
——model MODEL

-1 FILE, --logfile FIL
-v, ——-version
—-leap-template

—-no-conect

—-noter

—-template] [--no-conect] [-—noter]

PDB input file (default: stdin)

show this help message and exit

PDB input file (default: stdin)

PDB output file (default: stdout)

remove all hydrogen atoms (default: no)

remove all water molecules (default: no)

strip STRIP_ATOM_MASK

Strip given atom mask, (default: no)

mutate MUTATION_STRING

Mutate residue

keep only Amber-compatible residues (default: no)
rename GLU,ASP,HIS for constant pH simulation

keep most populous alt. conf. (default is to keep 'A')
Keep alternative conformations

Run Reduce first to add hydrogens. (default: no)

If reduce is on, skip using it for hetatoms. (default:
usual reduce behavior for hetatoms)

fetch structure with given pdbid, should combined with
-i option. Subjected to change

Use tleap to add missing atoms

Model to use from a multi-model pdb file (integer).
(default: use 1lst model). Use a negative number to
keep all models

E

log filename

version

write a leap template for easy adaption (EXPERIMENTAL)
Not write S-S conect record

Not writing TERUsage: pdb4amber [options]

12.4. pdb4amber

The new output file (specified with —o or —-out) is a standard PDB file with all residues sequentially re-
numbered from 1 to N. In addition, several other files are created automatically:

* A text file with the output PDB file name and _renum.txt added. This is a table to help convert the renum-
bered residues into the original ones.

* A PDB file with the output PDB file name and _nonprot.pdb appended. This is a PDB file that contains only
non-protein residues (apart from water), i.e., mainly ligands and other stuff.

e When using -d (--dry), a PDB file with the output file name plus _water.pdb added. This file contains

exclusively the water

that has been stripped from the original PDB file.

* A text file with the output PDB file name and _sslink attached, if disulfide bonds have been detected by
pdb4amber. This file might be used by the pytleap script to generate the correct disulfide bonds between

cysteines.

The following information is written to screen, but can also be captured into a text file by ending the command

line with ’2>’ e.g.:

pdbd4amber -i pdbin.pdb -o pdbout.pdb [-options] 2> some_file_name.log
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Chains: All chain indicators in the PDB file are listed. This is useful especially in cases where the x-ray unit cell
contains more than one image of a protein (or complex). In many cases, one is only interested in one main
peptide chain. A long list of different chains may indicate that the PDB file should cleaned manually prior
to using pdb4amber.

Insertions: Insertions are mostly ’artificial’ residue numbers to keep specific key residue numbers in large protein
families constant. pdb4amber discards insertion codes and re-numbers all residues from 1 to N. But the
insertions are listed to the screen and also included in the _renum.txt file.

Histidines: pdb4amber first checks if the type of each histidine (HIE, HIP, HID) can be determined from explicit
hydrogens. Any histidines whose protonation state can not be determined are renamd to HIE. A message
alerts the user to all histidine residues (the residue numbers refer to the renumbered scheme!) to allow for
manual reassignment if so desired.

Non-standard residues: Non-standard residues (i.e., residues not automatically recognized by Amber) are listed.
Mostly they are ligands (sometimes co-factors, detergent, buffer components, etc.). The user must take
care of these separately. These residues are also found in the _nonprot.pdb file mentioned above. They are
removed from the final output PDB file if the -p (--prot) option was chosen. Otherwise they are left also
in the output PDB file.

Cysteines in disulfide bonds: pdb4amber locates possible (most probable) disulfide bonds by checking the dis-
tance between SG (gamma sulfur) atoms in cysteines. If a distance SG-SG less than 2.5 Angstrom is found
between the SG atoms of two CYS, a disulfide bond is assumed. The respective CYS residues are renamed
to CYX (required for Amber) in the final PDB output file. CONECT records are also printed in the final
PDB output file which are then automatically recognized by tleap. The residue numbers of the CYX residues
refer to the renumbered scheme!

Gaps: pdb4amber tries hard (and mostly succeeds) in locating *gaps’, i.e., missing residues in the PDB file. This
is done by checking distances of consecutive C-N atoms. If such a distance is larger than 2 Angstrom,
pdb4amber considers that there is a gap between the two residues and reports the gap to the screen. The
listed residue numbers refer to the renumbered scheme! It is up to user to decide how to handle the gaps.
Doing nothing at all will most probably lead to trouble later! By simply introducing a TER record at the
gap, Amber (LEaP) will later introduce the charged N (NH3+) or C (COO-) terminals at the gap borders.
If far from the binding site, this might be OK (except in long and unconstrained MD, where such unnatural
charges will inevitably lead to unrealistic behavior). The better solution is to introduce ACE or NME caps at
the correct positions (in addition to a TER record separating the gap residues). This can be done in various
ways (e.g. with PyMol). The correct names of the newly introduced residues (ACE or NME) and atoms
(CH3 for the methyl carbon, C, N, O for the others) must be observed!

Missing atoms: pdb4amber tries to determine missing heavy atoms in standard amino acids and reports these.
Residue numbers refer to the renumbered sequence. Note that this has no implcations on further usage of
the file with LEaP since missing atoms are added automatically anyway. In some cases, this addition may
lead to clashes however and it might be useful to know which residues are actually affected by LEaP.

12.5. reduce

Reduce is a program for adding hydrogens to a Protein DataBank (PDB) molecular structure file. It was de-
veloped by J. Michael Word at Duke University in the lab of David and Jane Richardson. Reduce is described
in: Word, et. al. (1999) Asparagine and Glutamine: Using Hydrogen Atom Contacts in the Choice of Side-chain
Amide Orientation, J. Mol. Biol. 285, 1733-1747.

Both proteins and nucleic acids can have hydrogens added. HET groups can also be processed as long as
the atom connectivity is provided. A slightly modified version of the connectivity table provided by the PDB is
included. The latest version of reduce is available at http://kinemage.biochem.duke.edu/.

In most circumstances, the recommended command when using reduce to add hydrogens to a PDB file and
standardize the bond lengths of existing hydrogens is
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reduce -build -nuclear coordfile.pdb > coordfileH.pdb

which includes the optimization of adjustable groups (OH, SH, NH3+, Met-CH3, and Asn, Gln and His sidechain
orientation). Disulfides, covalent modifications, and connection of the ribose-phosphate nucleic acid backbone,
are recognized and any hydrogens eliminated by bonding are skipped. When an amino acid main-chain nitrogen
is not connected to the preceding residue or some other group, reduce treats it as the N-terminus and constructs an
NH3+ only if the residue number is less than or equal to an adjustable limit (1, by default). Otherwise, it considers
the residue to be the observable beginning of an actually-connected fragment and does not protonate the nitrogen.
Reduce does not protonate carboxylates (including the C-terminus) because it does not specifically consider pH,
instead modeling a neutral environment.

Hydrogens are positioned with respect to the covalently bonded neighbors and these are identified by name.
Nonstandard atom names are the primary cause of missing or misplaced hydrogens. If reduce tries to process a
file which contains hydrogens with nonstandard names, the existing hydrogens may not be recognized and may
interfere with the generation of new hydrogens. The solution may be to remove existing hydrogens before further
processing.

There are a number of other, more advance, options for reduce, which can be viewed by running:

reduce -h

12.6. packmol-memgen

packmol-memgen is a workflow to generate Amber-ready protein/membrane/ion/solvent systems by using
Memembed [372] as the protein orientation function, pdbremix [373] to estimate the volume and Packmol
[374, 375] as the packing engine. The software is also able to wrap simple Amber tasks, like parametrization
(“~-parametrize”) and minimization (“~-minimize”) of the generated system, or inclusion of solutes into the
water box. The workflow and main features have been described in:

* "PACKMOL-Memgen: A Simple-To-Use, Generalized Workflow for Membrane-Protein—Lipid-Bilayer
System Building" S. Schott-Verdugo and H. Gohlke Journal of Chemical Information and Modeling
59 (6), 2522-2528 doi:10.1021/acs.jcim.9b00269 [376].

A typical case scenario is, for example, to pack a bacterial membrane protein into a bacterial-like membrane
(such as DOPE:DOPG 3:1). To fulfill such a task, the following command line is sufficient:

packmol-memgen —-—-pdb NAME.pdb --lipids DOPE:DOPG —--ratio 3:1

where “NAME .pdb” corresponds to the protein that is going to be packed, and the orders of the colon-separated
lists of lipids and ratio correspond to each other. These lists can be further expanded to any complex mixture
the user desires (e.g., “DOPC: DOPE : DOPS : CHL1”), specifying different compositions per leaflet (by separating with
"//",e.g. “DOPC:DOPE//DOPE:DOPS”), or even adding additional lipid bilayers every time the “--1ipids” flag is
used. The user has to be aware that, by increasing the complexity of the membrane bilayer, the packing time will
increase, but more importantly, the time required to equilibrate such a system will also increase. The output pdb is
made Amber readable through charmmlipid2amber.py.

The lipid names used are abbreviations of trivial names, where the first and second letters correspond to the
acyl chains in positions sn-1 and sn-2, respectively, and the rest corresponds to the headgroup present (with the
exception of cholesterol):

<sn-1 tail><sn-2 tail><headgroup>

In case the first letter is a D, it is assumed that both acyl chains are equal (e.g. DOPC, 1,2-dioleoyl-sn-glycero-
phosphocholine). Tables 12.1 and 12.2 show the abbreviations used.
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Acyl chain full name (Acid) Abbreviation

Lauric acid | 12:0
Myristoic acid | 14:0
Palmitic acid | 16:0
Stearic acid | 18:0
Oleic acid | 18:1(9)
Arachidonic acid | 20:4(5,8,11,14)
Docosahexaenoic acid | 22:6(4,7,10,13,16,19) H (D)*
*D is the usual abbreviation. H is adopted to distinguish from diacyl phospholipids.

>0 wnw

Table 12.1.: Acyl chain abbreviations used in packmol-memgen.

| Head group full name | Abbreviation |

Phosphatidylcholine PC
Phosphatidylethanolamine PE
Phosphatidylglycerol PG
Phosphatidic acid PA
Phosphatidylserine PS
Cardiolipin CL

Table 12.2.: Head group abbreviations used in packmol-memgen.

The list of available lipids has been extended considerably from the possible combinations obtainable from plain
Lipid17 (resulting in what we call Lipid17_ext). New headgroups include lysophospholipids, phosphatidylinositols
and cardiolipins; they should be handled with care, as they are still in development. With “~-available_lipids”
a brief list of commonly used lipids will be printed. If you want a full list of the available lipids, you can use
“-——available_lipids_all”, but be aware that about 4000 lipids are available at the moment. If you are looking
for something specific, grep this list and see if you find the lipid you are interested in. From the available lipids,
lysophospholipids were included in AmberTools19, and cardiolipins are now included in AmberTools20. They use
Lipid17 parameters, with charges obtained through a multiconformational RESP fit, using a capping strategy as
described for both Lipid11 [83] and Lipid14 [85]. The headgroups included can be found in Table 12.3.

The 4-letter names of the lysophospholipids describe the topology of the molecules. For example, for 2LPC (1-
palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine), a lysophosphatidylcholine with a C16 fatty acid chain:

2 // "lyso" position, or where a tail was removed. In this case the tail in position sn-2 is "missing".
L // "lyso", indicating that the lipid corresponds to a lysophospholipid.

P // name of the tail present. Palmitoyl in this case.

c // 1ast letter of the name of the phospholipid head group. Choline in this case.

Cardiolipins follow similar rules as for phospholipids, with the name describing first positions sn-1 and sn-2
of the glycerol moiety attached in position sn-1 of the central glycerol, followed by positions sn-1 and sn-2 of
the glycerol attached in position sn-3, finishing with CL. For example, PODOCL would be a POPA (1-palmitoyl
2-oleoyl PA) and a DOPA (1,2-dioleoyl PA) attached through their sn-3 phosphate in positions sn-1 and sn-3 of a
glycerol, respectively. The exception to this comes when all tails are equal; in this case, the prefix T (from tetra-)
is added. As an example, TOCL is a glycerol with two DOPA residues attached in positions sn-1 and sn-3 of the
glycerol moiety.

Additionally to the lysophospholipid head groups, experimental head groups of phosphatidylinositols with mul-
tiple phosphorylation and protonation states are included. The parameters were derived in a similar fashion as for
the lysophospholipids, including GLYCAM_06;j (3.3) parameters for the inositol/phosphate part. The headgroups
of phosphatidylinositols can be found in Table 12.4 with the abbreviation used for packmol-memgen.
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] Description Lipid17_ext Residue Name

1,3-bis(sn-glycero-3’-phospho)-sn-glycerol CLI
1-hydroxy-sn-phosphatidylcholine PE2
2-hydroxy-sn-phosphatidylcholine PEl
1-hydroxy-sn-phosphatidylethanolamine PE2
2-hydroxy-sn-phosphatidylethanolamine PEI
1-hydroxy-sn-phosphatidylglycerol PG2
2-hydroxy-sn-phosphatidylglycerol PG1

Table 12.3.: Lipid17_ext cardiolipin and lysophospholipid head group residue names. For LIPID17 residue names,
check 3.9

To make use of lysophospholipids, phosphatidylinositols or cardiolipins, the parameter files within packmol-
memgen have to be loaded. The easiest way to do this is by using the “--parametrize” together with the
“——keep” flags. These will generate a leap.in file, which can be edited by the user if required. WARNING!:
In the case of cardiolipins, packmol-memgen requires to specify bonds for the acyl tails in position sn-3 for the
headgroup explicitly! This means that if for any reason you try to use the "CLI" headgroup outside of packmol-
memgen, you need to make sure to set these bonds in LEaP yourself.

A new feature added in AmberTools20 is the inclusion of gaussian shaped constraints to the membrane surface.
This allows to generate shapes of curved or buckled membranes with the program according to:

fx) = hel-E-40)

You can set the values of ¢, d or h by respectively listing the desired values after the "--xygauss" flag and
regulate the shape of the resulting system. An example of a line to build a buckled membrane would be:

packmol-memgen —--xygauss 50 5000 40 --dims 300 50 121 --tight_box —--parametrize

where "--dims" sets the x, y and z dimensions, and "--tight_box" is required to parametrize the system with the
expected xy dimensions and avoid the curvature from relaxing. This will generate a DOPC (lipid used by default)
membrane "pinched" in the x-axis. Finding the right dimensions and shape values might take some trial and error.
You can check the systems while they are being packed by opening the intermediate PDB with a molecular viewer
like PyMOL to decide if the generated shape is as expected. Consider checking the newly implemented MC-
barostat baroscalingdir option for your simulations if you use curved membranes. A barostat controling only the
z-axis (baroscalingdir=3) allows to relax the simulation box while keeping the xy dimensions.

Even though packmol-memgen was designed for membrane packing, it can also be used to solvate only. This
can be particularly useful if a salt or a specific solute concentration is desired. For this, use a command line as
follows:

packmol-memgen —-pdb NAME.pdb --solvate —-cubic \
—-solute SOLUTE.pdb --solute_con CONCENTRATION

where “SOLUTE.pdb” corresponds to a pdb file that contains the solute to be added, and “CONCENTRATION” is
either the number of molecules to add, the concentration in molar (by adding M as a suffix, e.g. 1 M) or
the volume percentage (by adding % as a suffix, e.g. 10%). The latter is estimated using a grid approach
on the input “soLUTE.pdb”. A distance constraint can be set between the introduced solute and a protein with
"-—solute_prot_dist", avoiding starting conformations close to a possible binding site.

For a complete set of available functionalities, please refer to the help included within the software by executing:

packmol-memgen —--help

Note: Due to the complex packing problem and the possible initial clashes in the output, the user is encouraged
to shortly minimize the system using the CPU code of pmemd or sander. This can be done directly with the

“——minimize” flag.
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] Description | Lipid17_ext Residue Name | Abbreviation | Protonated phosphate position |

Phosphatidylinositol (PI) PI PI -
PI-3’-phosphate PI3 PI3 -
PH3 PI3H 3

PI-4’-phosphate P14 P14 -
PH4 PI4H 4

PI-5’-phosphate PI5 PIS -
PH5 PISH 5

PI-3’,4’-bisphosphate P2A PI34A 3
P2B PI34B 4

H2A PI34H 3,4

2-A PI34- -

PI-3’,5’-bisphosphate P2C PI35A 3
P2D PI35B 5

H2B PI35H 3,5
2-B PI35- -

PI-4’,5’-bisphosphate P2E PI45A 4
P2F PI45B 5

H2C PI45H 4,5
2-C PI45- -

PI-3’,4°,5 -trisphosphate P3A PI345A 3,4
P3B PI345B 3,5

P3C PI345C 4,5

P3D P1345D 3

P3E PI345E 4

P3F PI345F 5
P3- PI345- -

P3H PI345H 3,45

Table 12.4.: Lipidl7_ext phosphatidylinositol head group residue names. For Lipidl7 residue names, check 3.9
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12.7. Building bilayer systems with AMBAT

An alternative tool for building bilayer systems is AMBAT (Amber Membrane Builder and Analysis Tool),
developed by Tarun Khanna and Ian Gould. This package consists of three tc/ scripts for building and analyzing
membrane models and for inserting proteins into the bilayer. Instructions and the scripts themselves are in the
$AMBERHOME/AmberTools/src/AMBAT folder.
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13.1. Introduction

LEaP is the generic name given to the programs teLeap and xalLeap, which are generally run via the tleap
and xleap shell scripts. These two programs share a common command language but the xleap program has
been enhanced through the addition of an X-windows graphical user interface. The name LEaP is an acronym
constructed from the names of the older AMBER software modules it replaces: link, edit, and parm. Thus, LEaP
can be used to prepare input for the AMBER molecular mechanics programs.

LEaP is the basic tool to construct force field files (see Fig. 1.1). Using tleap, the user can:

Read AMBER PREP input files

Read Amber PARM format parameter sets

Read and write Object File Format files (OFF)

Read and write PDB files

Construct new residues and molecules using simple commands

Link together residues and create nonbonded complexes of molecules
Modify internal coordinates within a molecule

Generate files that contain topology and parameters for AMBER and NAB

usage: tleap [ -I<dir> ] [ —-f <file>|- ]

The command tleap is a simple shell script that calls teLeap with a number of standard arguments. Directories to
be searched are indicated by one or more “-1” flags; standard locations are provided in the tleap script. The “-£”
flag is used to tell tleap to take its input from a file (or from stdin if “-£ - is specified). If there is no “-£” flag,
input is taken interactively from the terminal.

A key command for LEaP is loadPdb, which inputs sequence and structure information from Protein Databank
Files. Be sure to read Section 12 for information on how to “clean up” PDB files before loading them.

13.2. Concepts

In order to effectively use LEaP it is necessary to understand the philosophy behind the program, especially
the concepts of LEaP commands, variables, and objects. In addition to exploring these concepts, this section also
addresses the use of external files and libraries with the program.

13.2.1. Commands

A researcher uses LEaP by entering commands that manipulate objects. An object is just a basic building block;
some examples of objects are ATOMs, RESIDUEs, UNITs, and PARMSETs. The commands that are supported
within LEaP are described throughout the manual and are defined in detail in the “Command Reference” section.

The heart of LEaP is a command-line interface that accepts text commands which direct the program to
perform operations on objects. All LEaP commands have one of the following two forms:

command argumentl argument2 argument3 ...
variable = command argumentl argument2

For example:

edit ALA trypsin = loadPdb trypsin.pdb
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Each command is followed by zero or more arguments that are separated by whitespace. Some commands return
objects which are then associated with a variable using an assignment (=) statement. Each command acts upon
its arguments, and some of the commands modify their arguments’ contents. The commands themselves are case-
insensitive. That is, in the above example, edit could have been entered as Edit, eDiT, or any combination
of upper and lower case characters. Similarly, 1oadpdb could have been entered a number of different ways,
including loadpdb. In this manual, we frequently use a mixed case for commands. We do this to enhance the
differences between commands and as a mnemonic device. Thus, while we write createAtom, createResidue,
and createUnit in the manual, the user can use any case when entering these commands into the program.

The arguments in the command text may be objects such as NUMBERs, STRINGs, or LISTs, or they may be
variables. These two subjects are discussed next.

13.2.2. Variables

A variable is a handle for accessing an object. A variable name can be any alphanumeric string whose first
character is an alphabetic character. Alphanumeric means that the characters of the name may be letters, numbers,
or special symbols such as “*”. The following special symbols should not be used in variable names: dollar sign,
comma, period (full stop), pound sign (hash), equals sign, space, semicolon, double quote, or the curly braces {
and }. LEaP commands should not be used as variable names. Unlike commands, variable names are
case-sensitive: “ARG” and “arg” are different variables. Variables are associated with objects using an
assignment statement not unlike that found in conventional programming languages such as Fortran or C.

mole = 6.02E23
MOLE = 6.02E23
myName = "Joe Smith"

listOf7Numbers = { 1.2 2.3 3.4 4.5 6 7 8 }

In the above examples, both mole and MOLE are variable names, whose contents are the same (6.02 x 1023).
Despite the fact that both mole and MOLE have the same contents, they are not the same variable. This is due to
the fact that variable names are case-sensitive. LEaP maintains a list of variables that are currently defined. This
list can be displayed using the 1ist command. The contents of a variable can be printed using the desc command.

13.2.3. Objects

The object is the fundamental entity in LEaP. Objects range from the simple, such as NUMBERs and STRINGs,
to the complex, such as UNITs, RESIDUEs and ATOMs. Complex objects have properties that can be altered using
the set command, and some complex objects can contain other objects. For example, RESIDUEs are complex
objects that can contain ATOMs and have the properties: residue name, connect atoms, and residue type.

NUMBERs
NUMBERs are simple objects holding double-precision floating point numbers. They serve the same function
as “double precision” variables in Fortran and “double” variables in C.

STRINGs

STRINGS are simple objects that are identical to character arrays in C and similar to character strings in
Fortran. STRINGS store sequences of characters which may be delimited by double quote characters. Example
strings are:

"Hello there"

"String with a "" (quote) character"
"Strings contain letters and numbers:1231232"
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LISTs

LISTs are made up of sequences of other objects delimited by LIST open and close characters. The LIST open
character is an open curly bracket ({) and the LIST close character is a close curly bracket (}). LISTs can contain
other LISTs and be nested arbitrarily deep. Example LISTs are:

{1234}
{ 1.2 "string" }
{123 {121} {341}

LISTs are used by many commands to provide a more flexible way of passing data to the commands. The zMatrix
command has two arguments, one of which is a LIST of LISTs where each subLIST contains between three and
eight objects.

PARMSETSs (Parameter Sets)

PARMSETS are objects that contain bond, angle, torsion, and non-bonding parameters for AMBER force field
calculations. They are normally loaded from force field data files, such as parm94.dat, and frcmod files.

ATOMs

ATOMs are complex objects that do not contain any other objects. The ATOM object corresponds to the chem-
ical concept of an atom. Thus, it is a single entity that may be bonded to other ATOMs and used as a building
block for creating molecules. ATOMs have many properties that can be changed using the set command. These
properties are defined below.

name This is a case-sensitive STRING property and it is the ATOM’s name. The names for all ATOMs in a
RESIDUE should be unique. The name has no relevance to molecular mechanics force field parameters; it is
chosen arbitrarily as a means to identify ATOMs. Ideally, the name should correspond to the PDB standard,
being 3 characters long except for hydrogens, which can have an extra digit as a 4 character.

type This is a STRING property. It defines the AMBER force field atom type. It is important that the charac-
ter case match the canonical type definition used in the appropriate force field data (*.dat) or frcmod file.
For smooth operation, all atom types must have element and hybridization defined by the addatomTypes
command. The standard AMBER force field atom types are added by the selected leaprc file.

charge The charge property is a NUMBER that represents the ATOM’s electrostatic point charge to be used in a
molecular mechanics force field.

element The atomic element provides a simpler description of the atom than the type, and is used only for LEaP’s
internal purposes (typically when force field information is not available). The element names correspond to
standard nomenclature; the character “?” is used for special cases.

position This property is a LIST of NUMBERs. The LIST must contain three values: the (X, Y, Z) Cartesian
coordinates of the ATOM.

RESIDUEs

RESIDUEs are complex objects that contain ATOMs. RESIDUEs are collections of ATOMs, and are either
molecules (e.g., formaldehyde) or are linked together to form molecules (e.g., amino acid monomers). RESIDUEs
have several properties that can be changed using the set command. (Note that database RESIDUEs are each
contained within a UNIT having the same name; the residue GLY is referred to as GLY.1 when setting properties.
When two of these single-UNIT residues are joined, the result is a single UNIT containing the two RESIDUEs.)

One property of RESIDUE:s is connection ATOMs. Connection ATOMs are ATOMs that are used to make
linkages between RESIDUEs. For example, in order to create a protein, the N-terminus of one amino acid residue
must be linked to the C-terminus of the next residue. This linkage can be made within LEaP by setting the N
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ATOM to be a connection ATOM at the N-terminus and the C ATOM to be a connection ATOM at the C-terminus.
As another example, two CYX amino acid residues may form a disulfide bridge by crosslinking a connection atom
on each residue.

There are several properties of RESIDUESs that can be modified using the set command. The properties are
described below:

connect0 This defines the first of up to three ATOMs that are used to make links to other RESIDUEs. In
UNITs containing single RESIDUEs, the RESIDUE’s connect0 ATOM is usually defined as the UNIT’s
head ATOM. (This is how the standard library UNITs are defined.) For amino acids, the convention is to
make the N-terminal nitrogen the connect) ATOM.

connect1 This defines the second of up to three ATOMsS that are used to make links to other RESIDUEs. In
UNITs containing single RESIDUESs, the RESIDUE’s connect] ATOM is usually defined as the UNIT’s
tail ATOM. (This is done in the standard library UNITs.) For amino acids, the convention is to make the
C-terminal oxygen the connect] ATOM.

connect2 This defines the third of up to three ATOMs that are used to make links to other RESIDUEs. In amino
acids, the convention is that this is the ATOM to which disulfide bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Currently, it can have one of
the following values: “undefined”, “solvent”, “protein”, “nucleic”, or “saccharide”. Some of the LEaP
commands behave in different ways depending on the type of a residue. For example, the solvate commands
require that the solvent residues be of type “solvent”. It is important that the proper character case be used

when defining this property.

name The RESIDUE name is a STRING property. It is important that the proper character case be used when
defining this property.

UNITs

UNITs are the most complex objects within LEaP, and the most important. They may contain RESIDUEs and
ATOMs. UNITs, when paired with one or more PARMSETS, contain all of the information required to perform a
calculation using AMBER. UNITs can be created using the createunit command. RESIDUEs and ATOMs can
be added or deleted from a UNIT using the add and remove commands. UNITs have the following properties,
which can be changed using the set command:

head

tail These define the ATOMs within the UNIT that are connected when UNITs are joined together using the
sequence command or when UNITs are joined together with the PDB or PREP file reading commands. The
tail ATOM of one UNIT is connected to the head ATOM of the next UNIT in any sequence. (Note: a TER
card in a PDB file causes a new UNIT to be started.)

box This property can either be null, a NUMBER, or a LIST. The property defines the bounding box of the UNIT.
If it is defined as null then no bounding box is defined. If the value is a single NUMBER, the bounding box
will be defined to be a cube with each side being box A across. If the value is a LIST, it must contain three
NUMBERs, the lengths of the three sides of the bounding box.

cap This property can either be null or a LIST. The property defines the solvent cap of the UNIT. If it is defined
as null, no solvent cap is defined. If it is a LIST, it must contain four NUMBERSs. The first three define the
Cartesian coordinates (X, Y, Z) of the origin of the solvent cap in A, while the fourth defines the radius of
the solvent cap, also in A.

Examples of setting the above properties are

set dipeptide head dipeptide.l.N
set dipeptide box { 5.0 10.0 15.0 }
set dipeptide cap { 15.0 10.0 5.0 8.0 }
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The first example makes the amide nitrogen in the first RESIDUE within “dipeptide” the head ATOM. The second
example places a rectangular bounding box around the origin with the (X, Y, Z) dimensions of ( 5.0, 10.0, 15.0)
in A. The third example defines a solvent cap centered at ( 15.0, 10.0, 5.0 ) A with a radius of 8.0 A. Note: the
set cap command does not actually solvate, it just sets an attribute. See the solvateCap command for a more
practical case.

Complex objects and accessing subobjects

UNITs and RESIDUES are complex objects. Among other things, this means that they can contain other objects.
There is a loose hierarchy of complex objects and what they are allowed to contain. The hierarchy is as follows:

e UNITSs can contain RESIDUESs and ATOMs.
e RESIDUESs can contain ATOMs.

The hierarchy is loose because it does not forbid UNITs from containing ATOMs directly. However, the convention
that has evolved within LEaP is to have UNITs directly contain RESIDUEs which directly contain ATOMs.

Objects that are contained within other objects can be accessed using dot “.” notation. An example would be a
UNIT which describes a dipeptide ALA-PHE. The UNIT contains two RESIDUESs each of which contain several
ATOMs. If the UNIT is referenced (named) by the variable dipeptide, then the RESIDUE named ALA can be
accessed in two ways. The user may type one of the following commands to display the contents of the

RESIDUE:

desc dipeptide.ALA
desc dipeptide.l

The first command translates to “describe some RESIDUE named ALA within the UNIT named dipeptide”. The
second form translates as “describe the RESIDUE with sequence number 1 within the UNIT named dipeptide”.
The second form is more useful because every subobject within an object is guaranteed to have a unique sequence
number. If the first form is used and there is more than one RESIDUE with the name ALA, then an arbitrary
residue with the name ALA is returned. To access ATOMs within RESIDUEs, either of the following forms of
command may be used:

desc dipeptide.l.CA
desc dipeptide.1l.3

Assuming that the ATOM with the name CA has a sequence number 3 within RESIDUE 1, then both of the above
commands will print a description of the alpha-carbon of RESIDUE dipeptide.ALA or dipeptide.1. The reader
should keep in mind that dipeptide.1.CA is the ATOM, an object, contained within the RESIDUE named ALA
within the variable dipeptide. This means that dipeptide.1.CA can be used as an argument to any command that
requires an ATOM as an argument. However dipeptide.1.CA is not a variable and cannot be used on the left hand
side of an assignment statement.

13.3. Running LEaP

xleap -h or tleap -h

will give a list of command-line arguments (which are very simple). Once you have started either program, typing
“help” will bring up a lot of useful information about possible actions.

A file called leaprc is executed as a script file at the start of the LEaP session unless the user suppresses it with
a command line option. Sample files are in SAMBERHOME/dat/leap/cmd, and you may wish to copy one of these
to become "your" default file. LEaP will look first for a learpc file in the user’s current directory, then in any
directories included with -7 flags.

The command line interface allows the user to specify a log file that is used to log all input and output within
the command line environment. The log file is named using the logFile command. The file has two purposes: to
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allow the user to see a complete record of operations performed by LEaP, and to help recover from (and recreate)
program crashes. Output from LEaP commands is written to the log file at a verbosity level of 2 regardless of the
verbosity level set by the user using the verbosity command. Each line in the log file that was typed in by the user
begins with the two characters "> " (a greater-than sign followed by a space). This allows the user to extract the
commands typed into LEaP from the log file to create a script file that can be executed using the source command.
This provides a type of insurance against program crashes by allowing the user to regenerate their interactive
sessions. An example of a command that will create a script to reenact a LEaP session is:

cat LOGFILE | grep "*> " | sed "s/*> //" > SOURCEFILE.x

Note that changes via graphical and table interfaces (xleap) are not captured by command-line traces.

tleap (terminal LEaP) is the non-graphical, command-line-only interface to LEaP. It has the same functionality
as the xleap main window (Universe Editor Command Window, described below), and uses standard text control
keys. xleap is a windowing interface to LEaP. In addition to the command-line interface contained in the Universe
Editor window, it has a Unit Editor (graphical molecule editor), an Atom Properties Editor, and a Parmset Editor.
These editors are discussed in subsequent subsections.

13.3.1. Universe Editor

The window that first appears when the user starts xleap is called the Universe Editor. The Universe Editor is the
most basic way in which users can interact with xleap. It has two parts, the "command window," which corresponds
to the tleap command interface, and the "pulldown" items above the window, which provide mouse-driven methods
to generate specific commands for the command window, either directly or via popped-up dialog boxes. The items
in the pulldowns allow the user to generate commands using dialog boxes. To display the "File" pulldown, for
example, press the left mouse button on "File;" to select an item in the pulldown, keep the button down, move the
mouse to highlight the item, then release the mouse button. A dialog box will then pop up containing fields which
the user can fill in, and lists from which values can be chosen; these will be used to generate commands for the
command window interface.

13.3.2. Unit Editor

When the user enters the edit command from the Universe Editor Command Window, the Unit Editor will be
displayed if the argument to the edit command is an existing UNIT or a nonexistent (i.e. new) object. The Parmset
Editor will be activated if the argument is a PARMSET. The Parmset Editor is discussed later in this subsection.

The Unit Editor has five parts. At the top of the window is a pulldown menu bar; below it is a set of buttons titled
"Manipulation" that define the mode of mouse activity in the graphics window, and below that, a list of elements
to select for the manipulation "Draw" mode (selecting one automatically selects "Draw" mode). Then comes the
graphical molecule-editing ("viewing") window itself, and at the very bottom a text window where status and errors
are reported.

Unit Editor Menu Bar

The menu bar has three pulldowns: "Unit," "Edit," and "Display."

Unit pulldown The Unit pulldown contains commands affecting the whole UNIT.

* "Check unit" — checks the UNIT in the viewing window for improbable bond lengths, missing force
field atom types, close nonbonded contacts, and a non-integral and nonzero total charge. Information
is printed in the text window at the bottom of the Unit Editor.

e "Calculate charge" — the total electrostatic charge for the UNIT is displayed in the text window at the
bottom of the Unit Editor.

e "Build," "Add H & Build" — the coordinates of new atoms are adjusted according to hybridization
(inferred from bonds) and standard geometries. (See also the Edit pulldown’s "Relax” selection.)
Newly-drawn ATOMs are marked as "unbuilt" until they are marked otherwise by one of the Build
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commands or by the Edit pulldown’s "Mark selection (un)built." The builder only builds coordinates
for unbuilt ATOMs. This allows users to draw molecules piecemeal and make adjustments as they
draw, without worrying that the builder is going to undo their work. "Add H & Build" adds hydrogens
to the ATOMs that do not have a full valence and builds coordinates for the hydrogens and any other
ATOMs that are marked "unbuilt." The number of hydrogens added to each ATOM is determined by
the hybridization and element type of each ATOM.

"Import unit" — a selection window pops up for the user to incorporate a copy of another unit in the
current one. The imported unit will generally superimpose on the existing one. (Hint: select all atoms
in the current unit before doing this to simplify dragging them apart using the Manipulation Move
mode.)

"Close" — Exit the Editor.

Edit pulldown The Edit pulldown contains commands relating to the currently- selected ATOMs in the viewer
window. Selection is described below in the "Manipulation buttons" section.

L]

"Relax selection" — performs a limited energy minimization of all selected ATOMs, leaving unselected
ATOMs fixed in place, by relaxing strained bonds, angles, and torsions. If atom types have been
assigned and can be found in the currently-loaded force field, force field parameters are used. If no
types are available then default parameters are used that are based on ATOM hybridization. This
command invokes an iterative algorithm that can take some time to converge for large systems. As the
algorithm proceeds, the modified UNIT will be continuously updated within the viewing window. The
user can stop the process at any time by placing the mouse pointer within the viewing window and
typing control-C. Since only internal coordinates are energy minimized, steric overlap can result.

"Edit selected atoms" — pops up an Atom Properties Editor, a tool for examining/setting the properties
of the selected ATOMs. The Atom Properties Editor allows the user to edit the ATOM names, types
and charges in a convenient table format. It is described in a separate subsection below.

"Flip chirality" — This command inverts the chirality of all selected ATOMs. In order for the chirality
to be inverted, the ATOM cannot be in more than one ring. The operation causes the lightest chains
leaving the ATOM to be moved so as to invert the chirality. If the ATOM has only three chains attached
to it, then only one of the chains will be moved.

"Select Rings/Residues/Molecules" — expands the currently selected group of atoms to include all
partially-contained rings, residues, or molecules.

"Show everything" — causes all ATOMs to become visible.
"Hide selection" — makes all selected ATOMs invisible.
"Show selection only" — makes only selected ATOMs visible.

"Mark selection unbuilt/built" - see "Unit/Build," above.

Display pulldown The Display pulldown contains commands that determine what information is displayed within
the viewing window.
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"Names" — toggles display of ATOM names at each ATOM position.

"Types" — toggles display of molecular mechanics atom types. The ATOM types are displayed within
parentheses "()".

"Charges" — toggles display of the atomic charges.

"Residue names" — toggles display of residue names. These are displayed at the position of the first
ATOM, before any of that ATOM’s information that may be displayed. The residue names are dis-
played within angled brackets "<>".

"Axes" — toggles display of the Cartesian coordinate axes. The origin of the axes coincides with the
origin of Cartesian space.

"Periodic box" — toggles display of the periodic box, if the UNIT has one.
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Unit Editor manipulation buttons

The Manipulation buttons are Select, Twist, Move, Erase, and Draw. They determine the behavior of the mouse
left-button when the mouse pointer is in the Viewing Window.

Select This button allows one to select part or all of a UNIT in anticipation of a subsequent operation or action.
In the Select mode, the user can highlight ATOMs within the viewing window for special operations. The
mouse pointer becomes a pointing hand in the viewing window in this mode. Selected ATOMs are displayed
in a different color (or different line styles on monochrome systems) from all other ATOMs. Atoms can
be selected with the left-button in several ways: first, clicking on an atom and releasing selects that atom.
Clicking twice in a row on an atom (at any speed) selects all atoms (this is a bug — only the residue should be
selected). Keeping the button down and moving to release on another atom selects all ATOMs in the shortest
chain between the two ATOMs, if such a chain exists. Finally, by first pressing the button in empty space,
and holding it down as the mouse is moved, one can "drag a box" enclosing atoms of interest. Note that
a current selection can be expanded by using the "Edit" menubar pulldown select option to complete any
partial selection of rings, residues or molecules.

If the user holds down the SHIFT key while performing any of the above actions, the same effect will be
seen, except ATOMs will be unselected.

Twist Twist mode operates on previously-Selected atoms. The intention is to allow rotation about dihedrals; if too
many atoms are selected, odd transformations can occur. While in the Tiist mode, the mouse pointer looks
like a curved arrow. Twisting is driven by holding down the left-button anywhere in the viewing window and
moving the mouse up and down. It is important to select a complete torsion (all four atoms) before trying to
"twist" it.

Move Like Twist, Move mode operates on previously-Selected atoms. While in the Move mode, the mouse pointer
looks like four arrows coming out of one central point. Holding down the left-button anywhere allows
movement of these atoms by dragging in any direction in the viewing plane. (The view can be rotated by
holding down the middle-button to allow any movement desired.) This option allows the user to move the
selected ATOMs relative to the unselected ATOMs.

To rotate the selected ATOMs relative to the unselected ones, press and drag the mode (left) button while
holding down the SHIFT key. The selected ATOMs will rotate around a central ATOM on a "virtual sphere"
(see the subsubsection below on the rotate (middle) button for more information on the "virtual sphere").
The user can change which ATOM is used as the center of rotation by clicking the mode (left) button on any
of the ATOMs in the window.

Erase Erase mode causes the mouse pointer to resemble a chalkboard eraser when it is in the viewing window.
Clicking the left-button will delete any atoms or bonds under this mouse pointer, one atom or bond per click.

Draw Choosing Draw is equivalent to choosing the default "Elements" atom in the next array of buttons; the initial
default is carbon. While in the Draw mode, the mouse pointer is a pencil when in the viewing window.
Clicking the left-button deposits an atom of the current element, while dragging the mouse pointer with the
left-button held down draws a bond: if no atom is found where the button is released, one is created.

When the mouse pointer approaches an ATOM, the end of the line connected to the pointer will "snap" to
the nearest ATOM. This is to facilitate drawing of bonds between ATOMs. Any bonds that are drawn will by
default be single bonds. To change the order of a bond, the user would move the mouse to any point along
the bond and click the mode (left) button. This will cause the order of the bond to increase until it is reset
back to a single bond. The user can cycle through the following bond order choices: single, double, triple,
and aromatic.

If the user rotates a structure as it is being drawn, she will notice that all of the ATOMs that have been
drawn lie in the same plane. New ATOMs are automatically placed in the plane of the screen. The fact that
LEaP places the new ATOMSs in the same plane is not a handicap because once a rough sketch of part of
the structure is compete, the user can invoke one of LEaP’s two model building facilities ("Unit/Build" and
"Edit/Relax Selection" in the Unit Editor Menu bar) to build full three dimensional coordinates.
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Unit Editor Elements Buttons™ "C, H, O, ..." These buttons put the viewing window in Draw mode if it is not in
that mode already, and select the drawing element. The more common elements have their own buttons, and
all elements are also found by pulling down the other elements button.

Unit Editor Viewing Window

The viewing window displays a projection of the UNIT currently being edited. The user can manipulate the
structure within the viewing window with the mouse. By moving the mouse and holding down the mouse buttons,
the user can rotate, scale, and translate the UNIT within the window. The functions attached to the mouse buttons
are:

Rotate (Middle button) By pressing the rotate (middle) button within the viewing window and dragging the
mouse, the user can rotate the UNIT around the center of the viewing window. While the rotate (mid-
dle) button is down, a circle appears within the viewing window, representing a "virtual sphere trackball.”
As the user drags the mouse around the outside of the circle, the UNIT will spin around the axis normal to
the screen. As the user drags the mouse within the circle, the UNIT will spin around the axis in the screen,
perpendicular to the movement of the mouse. The structures that are being viewed can be considered to be
embedded within a sphere of glass. The circle is the projection of the edge of the sphere onto the screen.
Rotating a UNIT while the mouse is within the circle is akin to placing a hand on a glass sphere and turning
the sphere by pulling the hand. The rotate operation does not modify the coordinates of the ATOMs; rather,
it simply changes the user’s point of view.

Translate (Right button) By pressing the translate (right) button within the viewing window and dragging the
mouse around the viewing window, the user can translate the UNIT within the plane of the screen. The
structures will follow the mouse as it moves around the window. This operation does not modify the coordi-
nates of the UNIT.

Scale (middle plus right button) If the scale "button" (holding the middle and right buttons down at the same
time) is depressed, the user will change the size of the structures within the viewing window. Pressing the
scale (middle plus right) button and dragging the mouse up and down the screen will increase and decrease
the scale of the structures. This operation does not modify the coordinates of the UNIT.

Mode (left button) The function of the left button is determined by the current mode of the viewing window as
described in the "Manipulation" section, above. When the mouse enters the viewing window it changes
shape to reflect the current mode of the viewing window.

Spacebar Another always-available operation when the mouse pointer is in the viewing window is the keyboard
spacebar. It centers and normalizes the size of the molecule in the viewing window. This is especially useful
if the UNIT becomes "lost" due to some operation.

The functions of the middle and right buttons are fixed and always available to the user. This allows the user
to change the viewpoint of the UNIT within the viewing window regardless of its current mode. The user
might ask why there are controls to translate in the plane of the screen, but not out of the plane of the screen.
This is because LEaP does not have depth-cueing or stereo projection and this makes it difficult for users to
perceive changes in the depth of a structure. However, the user can rotate the entire UNIT by 90 degrees
which will orient everything so that the direction that was coming out of the screen becomes a direction
lying in the plane of the screen. Once the UNIT has been rotated using the rotate (middle) button, the user
can translate the structure anywhere in space. While it does take some getting used to, users can become
very adept at the combination of rotations and translations.

13.3.3. Atom Properties Editor

The Atom Properties Editor is popped up by the Unit Editor when the user selects the Edit selected atoms
command from the Edit pulldown. The Atom Properties Editor allows the user to edit the properties of ATOMs
using a convenient table format. ATOM properties are: name, type, charge, and element.
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13.3.4. Parmset Editor

If the user enters the command edit Foo in the Universe Editor and Foo is a PARMSET, then a Parmset Editor is
popped up. First, a window appears which contains a number of buttons. The buttons list the parameters that can
be edited — Atom, Bond, Angle, Proper Torsion, Improper Torsion, and Hydrogen Bond — and an option to close
the editor. Choosing one of the parameter buttons will pop up a Table Editor. This editor resembles that of the
Atom Properties Editor, having three parts: the Menu Bar, Status Window, and Table Window.

13.4. Basic instructions for using LEaP to build molecules

This section gives an overview of how LEaP is most commonly used. Detailed descriptions of all the commands
are given in the next section.

13.4.1. Building a Molecule For Molecular Mechanics

In order to prepare a molecule within LEaP for AMBER, three basic tasks need to be completed.
1. Any needed UNIT or PARMSET objects must be loaded;
2. The molecule must be constructed within LEaP;
3. The user must output topology and coordinate files from LEaP to use in AMBER.
The most typical command sequence is the following:

source leaprc.protein.ffl14SB (load a force field)
x = loadPdb trypsin.pdb (load in a structure)
. add in cross-links, solvate, etc.

saveAmberParm x prmtop prmcrd (save files)
There are a number of variants of this:

1. Although loadpdp is by far the most common way to enter a structure, one might use loadoff, or
loadAmberPrep, or use the zMatrix command to build a molecule from a Z-matrix. For small molecules,
e.g., ligand like, 1oadMol2 or loadMol3 are available. See the Commands section below for descriptions of
these options. If you do not have a starting structure (in the form of a PDB file), LEaP can be used to build
the molecule; you will find, however, that this is not always a straightforward process. Many experienced
Amber users turn to other (commercial and non-commercial) programs to create their initial structures.

2. Be very attentive to any errors produced in the 1oadPdb step; these generally mean that LEaP has misread
the file. A general rule of thumb is to keep editing your input PDB file until LEaP stops complaining. It is
often convenient to use the addPdbAtomMap Or addPdbResMap commands to make systematic changes from
the names in your PDB files to those in the Amber topology files; see the leaprc files in SAMBERHOME/-
dat/leap/cmd for examples of this. Be sure to read Section 12 for information on how to “clean up” PDB
files before loading them.

3. The saveAmberParm command cited above is appropriate for most force fields; for polarizable calculations
you will need to use saveAmberParmpPol.

13.4.2. Amino Acid Residues

For each of the amino acids found in the LEaP libraries, there has been created an N-terminal and a C-terminal
analog. The N-terminal amino acid UNIT/RESIDUE names and aliases are prefaced by the letter N (e.g., NALA)
and the C-terminal amino acids by the letter C (e.g., CALA). If the user models a peptide or protein within LEaP,
they may choose one of three ways to represent the terminal amino acids. The user may use (1) standard amino
acids, (2) protecting groups (ACE/NME), or (3) the charged C- and N-terminal amino acid UNITs/RESIDUE:s. If
the standard amino acids are used for the terminal residues, then these residues will have incomplete valences.
These three options are illustrated below:
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{ ALA VAL SER PHE }
{ ACE ALA VAL SER PHE NME }
{ NALA VAL SER CPHE }

The default for loading from PDB files is to use N- and C-terminal residues; this is established by the
addpdbResMap command in the default leaprc files. To force incomplete valences with the standard residues,
one would have to define a sequence (“ x = { ALA VAL SER PHE }”) and use loadPdbUsingSeq, Or use
clearPdbResMap to completely remove the mapping feature.

Histidine can exist either as the protonated species or as a neutral species with a hydrogen at the & or € position.
For this reason, the histidine UNIT/RESIDUE name is either HIP, HID, or HIE (but not HIS). The default “leaprc”
file assigns the name HIS to HIE. Thus, if a PDB file is read that contains the residue HIS, the residue will be
assigned to the HIE UNIT object. This feature can be changed within one’s own leaprc file.

The AMBER force fields also differentiate between the residue cysteine (CYS) and the similar residue which
participates in disulfide bridges, cystine (CYX). The user will have to explicitly define, using the bond command,
the disulfide bond for a pair of cystines, as this information is not read from the PDB file. In addition, the user
will need to load the PDB file using the 10adPdbUsingSeq command, substituting CYX for CYS in the sequence
wherever a disulfide bond will be created.

13.4.3. Nucleic Acid Residues

The “D” prefix can be used to distinguish between deoxyribose and ribose units. Residue names like “A” or
“DA” can be followed by a “5” or “3” (“DAS5”, “DA3”) for residues at the ends of chains; this is also the default
established by addpdbResMap, even if the “5” or “3” are not added in the PDB file. The “5” and “3” residues
are “capped” by a hydrogen; the plain and “3” residues include a “leading” phosphate group. Neutral residues
(nucleosides) capped by hydrogens end their names with “N”, as in “DAN”.

13.5. Error Handling and Reporting

In Amber version 18 changes were made to LEaP’s error processing. The first set of changes involve error
handling. For input from a file (i.e., t leap invoked with —-f )execution is now terminated at the first occurrence
of these errors: file input/output errors, illegal command syntax, illegal command arguments, and some command
parsing errors. The intent is to simplify error detection and to ease troubleshooting. For interactive input there is
no change in handling: LEaP continues to be forgiving of these errors in the hope that the user can recover in real
time.

The final set of changes involve error reporting. LEaP produces four kinds of messages: errors, warnings, notes,
and processing messages. Messages beginning with "Fatal Error!" or "Error!" or "Error:" indicate a serious prob-
lem. Messages beginning with "Warning!" or "Warning:" indicate a potential problem that should be investigated.
Messages beginning with "Note." or "Note:" provide information worth noting. Messages that are not designated
by one of the above tags report processing status. Total counts of errors, warnings, and notes are outputted at the
end of LEaP. The intent is to simplify error detection by emitting clear and consistent messages.

As with all computational software, LEaP’s output should be carefully examined. Some error and warning
messages mention likely causes or contain suggested workarounds, but all such messages provide clues. Apply
common sense and the scientific method to troubleshoot. Typical first steps are to verify input files and to search the
AMBER Mail Reflector for similar reported problems. Note that LEaP normally produces a log file that contains
these messages and more detailed output that can be inspected.

13.6. Commands

The following is a description of the commands that can be accessed using the command line interface in tleap,
or through the command line editor in x/leap. Whenever an argument in a command line definition is enclosed
in square brackets (e.g., [arg]), then that argument is optional. When examples are shown, the command line is
prefaced by “> , and the program output is shown without this character preface.
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Some commands that are almost never used have been removed from this description to save space. You can use
the “help” facility to obtain information about these commands; most only make sense if you understand what the
program is doing behind the scenes.

13.6.1. add

add a b

UNIT/RESIDUE/ATOM a,b
Add the object b to the object a. This command is used to place ATOMs within RESIDUEs, and RESIDUEs
within UNITs. This command will work only if b is not contained by any other object.

The following example illustrates both the add command and the way the TIP3P water molecule is created for
the LEaP distribution.

hl = createAtom H1 HW 0.417
h2 = createAtom H2 HW 0.417
o = createAtom O OW -0.834

set hl element H
set h2 element H

set o element O

r = createResidue TIP3
add r hl
add r h2
add r o

>
>

>

>

>

>

>

>

>

>

>

>

>

> bond hl o
> bond h2 o
> bond hl h2
>
>
>
>
>
>
>
>
>
>
>
>
>

TIP3 = createUnit TIP3

add TIP3 r
set TIP3.1 restype solvent
set TIP3.1 imagingAtom TIP3.1.0

zMatrix TIP3 {

{ H1 0 0.9572 }

{ H2 O H1 0.9572 104.52 }
}

saveOff TIP3 water.lib
Saving TIP3.
Building topology.
Building atom parameters.

13.6.2. addAtomTypes

addAtomTypes { { type element hybrid } { ... } ... }

Define element and hybridization for force field atom types. This command for the standard force fields can be
seen in the default leaprc files. The STRINGs are most safely rendered using quotation marks. If atom types are
not defined, confusing messages about hybridization can result when loading PDB files.
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13.6.3. addlons and addlons2

addIons unit ionl numIonl [ion2 numIon2]
addIons2 unit ionl numIonl [ion2 numIon2]

Adds counterions in a shell around unit using a Coulombic potential on a grid. If numlonl is O then the unit is
neutralized. In this case, ionl must be opposite in charge to unit and ion2 must not be specified. Otherwise, the
specified numbers of ionl [ion2 ] are added [in alternating order]. If solvent is present, it is ignored in the charge
and steric calculations, and if an ion has a steric conflict with a solvent molecule, the ion is moved to the center
of that solvent molecule, and the latter is deleted. (To avoid this behavior, either solvate _after_ addions, or use
addIons2.) Ions must be monatomic. This procedure is not guaranteed to globally minimize the electrostatic
energy. When neutralizing regular-backbone nucleic acids, the first cations will generally be placed between
phosphates, leaving the final two ions to be placed somewhere around the middle of the molecule. The default grid
resolution is 1 A, extending from an inner radius of (maxlonVdwRadius + maxSoluteAtomVdwRadius) to an outer
radius 4 A beyond. A distance-dependent dielectric is used for speed. addIons2 is the same as addIons, except
solvent and solute are treated the same.

13.6.4. addlonsRand

addIonsRand unit ionl #ionl [ion2 #ion2] [separation]

Adds counterions in a shell around unit by replacing random solvent molecules. If #ionl is 0, the unit is neutralized
(ionl must be opposite in charge to unit, and ion2 cannot be specified). Otherwise, the specified numbers of ionl!
[ion2] are added [in alternating order]. If separation is specified, ions will be guaranteed to be more than that
distance apart in Angstroms.

Tons must be monoatomic. This procedure is much faster than addIons, as it does not calculate charges. Solvent
must be present. It must be possible to position the requested number of ions with the given separation in the
solvent.

13.6.5. addPath

addPath path

Add the directory in path to the list of directories that are searched for files specified by other commands. The
following example illustrates this command.

> addPath /disk/howard
/disk/howard added to file search path.

After the above command is entered, the program will search for a file in this directory if a file is specified in a
command. Thus, if a user has a library named ““/disk/howard/rings.lib”” and the user wants to load that library, one
only needs to enter load rings.lib and not load /disk/howard/rings.lib.

13.6.6. addPdbAtomMap

addPdbAtomMap list

The atom Name Map is used to try to map atom names read from PDB files to atoms within residue UNITs when
the atom name in the PDB file does not match an atom in the residue. This enables PDB files to be read in without
extensive editing of atom names. Typically, this command is placed in the LEaP startup file, “leaprc”, so that
assignments are made at the beginning of the session. /ist should be a LIST of LISTs. Each sublist should contain
two entries to add to the Name Map. Each entry has the form:

{ string string }

where the first string is the name within the PDB file, and the second string is the name in the residue UNIT.
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13.6.7. addPdbResMap

addPdbResMap list

The Name Map is used to map RESIDUE names read from PDB files to variable names within LEaP. Typically,
this command is placed in the LEaP startup file, “leaprc”, so that assignments are made at the beginning of the
session. The LIST is a LIST of LISTs. Each sublist contains two or three entries to add to the Name Map. Each
entry has the form:

{ double stringl string2 }

where double can be 0 or 1, stringl is the name within the PDB file, and string2 is the variable name to which
string I will be mapped. To illustrate, the following is part of the Name Map that exists when LEaP is started from
the “leaprc” file included in the distribution:

ADE --> DADE

0 ALA --> NALA
0 ARG —--> NARG
1 ALA --> CALA
1 ARG --> CARG
1 VAL --> CVAL

Thus, the residue ALA will be mapped to NALA if it is the N-terminal residue and CALA if it is found at the
C-terminus. The above Name Map was produced using the following (edited) command line:

addPdbResMap {

{ 0 ALA NALA } { 1 ALA CAIA }
{ 0 ARG NARG } { 1 ARG CARG } :
{ 0 VAL NVAL } { 1 VAL CVAL }

{ ADE DADE } :
}

vV V.V V V VYV

13.6.8. alias
alias [ stringl [ string2 ] ]

This command will add or remove an entry to the Alias Table or list entries in the Alias Table. If both strings are
present, then stringI becomes the alias to string2, the original command. If only one string is used as an argument,
then that string will be removed from the Alias Table. If no arguments are given to the command, the current
aliases stored in the Alias Table will be listed.

The proposed alias is first checked for conflict with the LEaP commands and rejected if a conflict is found. A
proposed alias will replace an existing alias with a warning being issued. The alias can stand for more than a single
word, but also as an entire string so the user can quickly repeat entire lines of input.

13.6.9. bond

bond atoml atom2 [ order ]

Create a bond between atoml and atom2. Both of these ATOMs must be contained by the same UNIT. By
default, the bond will be a single bond. By specifying “-”, “=", “#”, or “:” as the optional argument, order, the
user can specify a single, double, triple, or aromatic bond, respectively. Example:

bond trx.32.SG trx.35.SG
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13.6.10. bondByDistance

bondByDistance container [ maxBond ]

Create single bonds between all ATOMs in the UNIT container that are within maxBond A of each other. If
maxBond is not specified, a default distance will be used. This command is especially useful in building
molecules. Example:

bondByDistance alkylChain

13.6.11. check

check unit [ parms ]

This command can be used to check unit for internal inconsistencies that could cause problems when performing
calculations. This is a very useful command that should be used before a UNIT is saved with saveAmberParm or
its variants. Currently it checks for the following possible problems:

* long bonds

* short bonds

* non-integral total charge of the UNIT
* missing force field atom types

e close contacts (< 1.5 A) between nonbonded ATOMs

The user may collect any missing molecular mechanics parameters in a PARMSET for subsequent editing. In the
following example, the alanine UNIT found in the amino acid library has been examined by the check command:

> check ALA

Checking ’'ALA’....

Checking parameters for unit ’'ALA’.
Checking for bond parameters.
Checking for angle parameters.

Unit is OK.

13.6.12. combine
variable = combine 1list

Combine the contents of the UNITs within /ist into a single UNIT. The new UNIT is placed in variable. This
command is similar to the sequence command except it does not link the ATOMs of the UNITs together. In the
following example, the input and output should be compared with the example given for the sequence command.

> tripeptide = combine { ALA GLY PRO }
Sequence: ALA

Sequence: GLY

Sequence: PRO

> desc tripeptide

UNIT name: ALA !! bug: this should be tripeptide!
Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>
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13.6.13. copy

newvariable = copy variable

In most cases, creates an exact duplicate of the object variable. Since newvariable is not pointing to the same
object as variable, changing the contents of one object will not alter the other object. Example:

> tripeptide = sequence { ALA GLY PRO }
> tripeptideSol = copy tripeptide

> solvateBox tripeptideSol TIP3PBOX 8 2

In the above example, tripeptide is a separate object from tripeptideSol and is not solvated. Had the user instead
entered

> tripeptide = sequence { ALA GLY PRO }
> tripeptideSol = tripeptide

> solvateBox tripeptideSol TIP3PBOX 8 2

then both tripeptide and tripeptideSol would be solvated since they would both refer to the same object.

Note that in a few instances, the copy command does not produce an exact copy. This is particularly relevant
when making copies of oligosaccharide residues. In these, the copy command invariably inverts chirality at the
anomeric carbon. The workaround for this is to use the copy command twice, where the second call inverts the
chirality back.

13.6.14. createAtom

variable = createAtom name type charge

Return a new and empty ATOM with name, type, and charge as its atom name, atom type, and electrostatic point
charge. (See the add command for an example of the createatom command.)

13.6.15. createResidue
variable = createResidue name

Return a new and empty RESIDUE with the name name. (See the add command for an example of the
createResidue command.)

13.6.16. createUnit
variable = createUnit name

Return a new and empty UNIT with the name name. (See the add command for an example of the createUnit
command.)

13.6.17. deleteBond

deleteBond atoml atom2

Delete the bond between the ATOMs atom! and atom2. If no bond exists, an error will be displayed.
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13.6.18. desc

desc variable

Print a description of the object variable. In the following example, the alanine UNIT found in the amino acid
library has been examined by the desc command:

> desc ALA

UNIT name: ALA

Head atom: .R<ALA 1>.A<N 1>
Tail atom: .R<ALA 1>.A<C 9>
Contents: R<ALA 1>

Now, the desc command is used to examine the first residue (1) of the alanine UNIT:

> desc ALA.1

RESIDUE name: ALA
RESIDUE sequence number: 1
Type: protein
Connection atoms:
Connect atom 0: A<N 1>
Connect atom 1: A<C 9>
Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

Next, we illustrate the desc command by examining the ATOM N of the first residue (1) of the alanine UNIT:

> desc ALA.1.N

ATOM Name: N

Type: N

Charge: -0.463

Element: N

Atom flags: 20000 |posfxd- posblt- posdrn—- sel- pert- notdisp- tchd-
posknwn+ int - nmin- nbld-

Atom position: 3.325770, 1.547909, -0.000002

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<ALA 1>.A<HN 2> by a single bond.

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Since the N ATOM is also the first atom of the ALA residue, the following command will give the same output as
the previous example:

> desc ALA.1.1

13.6.19. groupSelectedAtoms

groupSelectedAtoms unit name
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Create a group within unit with the name name, using all of the ATOMs within unit that are selected. If the group
has already been defined then overwrite the old group. The desc command can be used to list groups. Example:

groupSelectedAtoms TRP sideChain

An expression like “TRP@sideChain” returns a LIST, so any commands that require LISTs can take advantage of
this notation. After assignment, one can access groups using the “@” notation. Examples:

select TRP@sideChain
center TRP@sideChain

The latter example will calculate the center of the atoms in the “sideChain” group. (See the select command for
a more detailed example.)

13.6.20. help

help [string]

This command prints a description of the command in string. If no argument is given, a list of help topics is
provided.

13.6.21. impose

impose unit seqlist internals

The impose command allows the user to impose internal coordinates on unit. The list of RESIDUEs to impose the
internal coordinates upon is in seglist. The internal coordinates to impose are in internals, which is an object of
type LIST.

The command works by looking into each RESIDUE within unit that is listed in seqlist and attempts to apply
each of the internal coordinates within internals. The seqlist argument is a LIST of NUMBERS that represent
sequence numbers or ranges of sequence numbers. A range of sequence numbers is represented by two element
LISTs that contain the first and last sequence number in the range. The user can specify sequence number ranges
that are larger than what is found in unif, in which case the range will stop at the beginning or end of unit as
appropriate. For example, the range { 1 999 } will include all RESIDUEs in a 200 RESIDUE UNIT.

The internals argument is a LIST of LISTs. Each sublist contains a sequence of ATOM names which are of
type STRING followed by the value of the internal coordinate. An example of the impose command would be:

impose pept:l.de { 12 3 } { { “N” “CA” “C” “N” -40.0 } { wC” “N” “CA” “C” -60.0 } }

This would cause the RESIDUE with sequence numbers 1, 2, and 3 within the UNIT peptide to assume an
oa-helical conformation. The command

impose peptide { 1 2 { 5 10 } 12 } { { “caA” “CB” 5.0 } }

will impose on the residues with sequence numbers 1, 2, 5, 6, 7, 8, 9, 10, and 12 within the UNIT peptide a bond
length of 5.0 A between the o and 8 carbon atoms. RESIDUEs without an ATOM named CB, such as glycine,
will be unaffected.

It is important to understand that the impose command attempts to perform the intended action on all residues in
the seqlist, but does not necessarily limit itself to acting only upon internals contained within those residues. That
is, the list does not limit the residues to consider. Rather, it is a list of all starting points to consider. In other words,
to specify a seqlist of { 3 4 } tells impose to attempt to set two torsions, one starting in residue 3 and the other
starting in residue 4. It does not specify that the torsion should only be set if the atoms are found within residues 3
and/or 4.

Because of this, one must be careful when setting torsions between two residues. It is necessary to know which
atoms are contained in which residues. Consider the following trisaccharide:
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0-D-Glep-(1-6)-B-D-Manp-(1-6)-B-D-Galp-OH

To build it most simply in leap requires the following directive. Note that the build order in leap is the reverse
of the standard order in which the residues are written above.

glycan = sequence { ROH 6LB 6MB 0GA }

A proper build of a 1-6 oligosaccharide linkage often requires setting three torsions. In the manner that residues
are defined in the Glycam force fields, the atoms describing two of those torsions, ¢ and y, span two residues.
However, the atoms in the third, @, exist entirely within one residue. In fact, they exist within all three glycan
residues in the example above. The following commands will set only the three torsions in the glycosidic linkage
between residues 4 (0GA) and 3 (6MB).

impose glycan { 4 } { { “H1” “Cl1” “06” “C6” —-60.0 } } # O6 & C6 are in residue 3
impose glycan { 4 } { { “Cl1” “06” “C6” “C5” 180.0 } } # only Cl is in residue 4
{31 {

impose glycan { “06” “C6” “C5” “05” 60.0 } } # all are in residue 3

The common misconception that the seqlist sets a limit on the residues affected can cause trouble in this case. For
example, this command

impose glycan { 4 3 } { { “Hl1” “Cl1” “06” “Cé6” -60.0 } }

will find all sequences beginning in residue 4 and in residue 3 that contain the serially bonded atoms HI1 C1 O6
and C6. Therefore, in this case, it will set the specified torsions between residues 4 and 3 as well as between 3 and
2. Similarly, this command

impose peptide { 4 } { { “06” “C6” “C5” “05” 60.0 } }

will not affect any inter-residue linkage, but instead will set the C5-C6 torsion in the glucopyranoside (0GA) at the
non-reducing end of the oligosaccharide.

The ordering and content within the internals list is important as well. For these examples, consider the simple
peptide sequence:

peptide = sequence { ALA ALA ALA AIA }

The ordering of the internals specifies the atoms to which the torsion set is applied. The impose command will
find the first atom in the internals list, check for the presence of a bonded second atom, and so forth. It will then
apply the action, here a torsion, to those four atoms. For example, this command:

impose peptide { 3 } { { “N” “CA” “C” “N” -40.0 } } # between 3 and 4
will set the torsion between residues 3 and 4. However, this one:
impose peptide { 3 } { { “™N” “C” “CA” “N” -40.0 } } # between 3 and 2

will set the torsion between residues 3 and 2.

If at any point, the impose command does not find an atom bonded to a previous atom in an internals list, it will
silently ignore the command. This is likely to occur in two instances. One, the atom simply might not exist in the
residue:

impose peptide { 3 } { { “"N” “CA” “CB” “HB4” 10.0 } } # no effect, silent

Here, of course, there is no atom named HB4 in alanine. Similarly, improper torsions are ignored. For example,
this command also has no effect:

impose peptide { 3 } { { “N” “HBl1” “CA” “CB” 10.0 } } # no effect, silent

because HB1 is not bonded to N.

Three types of conformational change are supported: Bond length changes, bond angle changes, and torsion
angle changes. If the conformational change involves a torsion angle, then all dihedrals around the central pair of
atoms are rotated. The entire list of internals is applied to each RESIDUE.

It is also important to note that the impose command performs its actions entirely using internal coordinates.
Because of this, it is difficult to predict the resulting behavior when the coordinates are translated back to cartesian,
for example when writing a PDB file.
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13.6.22. list

List all of