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Introduction and Installation






1. Introduction

Amber is the collective name for a suite of programs that allow users to carry out molecular dynamics simu-
lations, particularly on biomolecules. None of the individual programs carries this name, but the various parts
work reasonably well together, and provide a powerful framework for many common calculations.[1, 2] The term
Amber is also used to refer to the empirical force fields that are implemented here.[3, 4] It should be recognized,
however, that the code and force field are separate: several other computer packages have implemented the Amber
force fields, and other force fields can be implemented with the Amber programs. Further, the force fields are in
the public domain, whereas the codes are distributed under a license agreement.

The Amber software suite is divided into two parts: AmberTools20, a collection of freely available programs
mostly under the GPL license, and Amber20, which is centered around the pmemd simulation program, and which
continues to be licensed as before, under a more restrictive license. Amber20 represents a significant change from
the most recent previous version, Amber18. (We have moved to numbering Amber releases by the last two digits
of the calendar year, so there are no odd-numbered versions.) Please see http://ambermd.org for an overview
of the most important changes.

AmberTools is a set of programs for biomolecular simulation and analysis. They are designed to work well
with each other, and with the “regular” Amber suite of programs. You can perform many simulation tasks with
AmberTools, and you can do more extensive simulations with the combination of AmberTools and Amber itself.
Most components of AmberTools are released under the GNU General Public License (GPL). A few components
are in the public domain or have other open-source licenses. See the README file for more information.

Everyone should read (or at least skim) this chapter. Even if you are an experienced Amber user, there may be
things you have missed, or new features, that will help. There are also tips and examples on the Amber Web pages
at http://ambermd.org. Although Amber may appear dauntingly complex at first, it has become easier to use over
the past few years, and overall is reasonably straightforward once you understand the basic architecture and option
choices. In particular, we have worked hard on the tutorials to make them accessible to new users. Thousands of
people have learned to use Amber; don’t be easily discouraged.

If you want to learn more about basic biochemical simulation techniques, there are a variety of good books to
consult, ranging from introductory descriptions,[5—7] to standard works on liquid state simulation methods,[8—10]
to multi-author compilations that cover many important aspects of biomolecular modelling.[11-15] Looking for
"paradigm" papers that report simulations similar to ones you may want to undertake is also generally a good idea.
If you are new to this field, Chapter 14 provides a basic introduction to force fields, along with details of how the
parameters are encoded in Amber files.

1.1. Information flow in Amber

Understanding where to begin in AmberTools is primarily a problem of managing the flow of information in
this package — see Fig. 1.1. You first need to understand what information is needed by the simulation programs
(sander, pmemd, mdgx or nab). You need to know where it comes from, and how it gets into the form that these
programs require. This section is meant to orient the new user and is not a substitute for the individual program
documentation.

Information that all the simulation programs need (see the circles in Fig. 1.1):

1. Cartesian coordinates for each atom in the system. These usually come from X-ray crystallography, NMR
spectroscopy, or model-building. They should generally be in Protein Data Bank (PDB) format. The program
LEaP provides a platform for carrying out many of these modeling tasks, but users may wish to consider
other programs as well. Generally, editing of these files is needed, and the pdb4amber script can do some of
this.

13
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pdb4amber

antechamber,
pyMSMT,
mdgx,
LEaP

proftop
profcrd

parmed

sander,
mdgx,
pmemd

NMR or
XRAY info

MMPBSA.py, mdout_analyzer,
FEW cpptraj

Figure 1.1.: Basic information flow in Amber

. Topology: Connectivity, atom names, atom types, residue names, and charges. This information comes from

the database, which is found in the SAMBERHOME/dat/leap/lib directory, and is described in Chapter 3. It
contains topology for the standard amino acids as well as N- and C-terminal charged amino acids, DNA,
RNA, and common sugars and lipids. Topology information for other molecules (not found in the standard
database) is kept in user-generated “residue files”, which are generally created using antechamber.

. Force field: Parameters for all of the bonds, angles, dihedrals, and atom types in the system. The standard

parameters for several force fields are found in the SAMBERHOME/dat/leap/parm directory; see Chapter 3
for more information. These files may be used “as is” for proteins and nucleic acids, or users may prepare
their own files that contain modifications to the standard force fields.

. Once the topology and coordinate files (often called prmtop and prmcrd, but any legal file names can be

used) are created, the parmed script can be used to examine and verify these, and to make modifications. In
particular, the checkValidity action will flag many potential problems.

. Commands: The user specifies the procedural options and state parameters desired. These are specified in

input files (named mdin by default) or in “driver” programs written in the NAB language.



1.1. Information flow in Amber

1.1.1. Preparatory programs

LEaP is the primary program to create a new system in Amber, or to modify existing systems. It is available as
the command-line program tleap or the GUI xleap. It combines the functionality of prep, link, edit and parm
from much earlier versions of Amber.

pdb4amber generally helps in preparing pdb-format files coming from other places (such as resb.org) to be com-
patible with LEaP.

parmed provides a simple way to extract information about the parameters defined in a parameter-topology file. It
can also be used to check that the parameter-topology file is valid for complex systems (see the checkValidity
command), and it can also make simple modifications to this file.

antechamber is the main program to develop force fields for small organic molecules (e.g., drugs, modified amino
acids) using a version of the general Amber force field (GAFF). These can be used directly in LEaP, or can
serve as a starting point for further parameter development.

MCPB.py provides a means to build, prototype, and validate MM models of metalloproteins and organometallic
compounds. It uses the bonded plus electrostatics model to expand existing pairwise additive force fields.
It is a reimplementation of MCPB in Python, with a more efficient workflow and many modeling processes
from previous versions incorporated automatically.

IPMach.py provides a tool to facilitate the parameterization of nonbonded models (12-6 LJ model and 12-6-4
LJ-type model) for ions.

mdgx allows the generation of bonded force field parameters for any molecule by fitting to quantum data.

packmol-memgen provides a simple way to generate membrane systems, with or without protein, by orient-
ing input proteins with Memembed and using Packmol as the packing engine. It can handle complex
lipid mixtures, as well as multi-bilayer systems. The output is compatible with Amber through charmm-
lipid2amber.py.

1.1.2. Simulation programs

sander (part of AmberTools) is the basic energy minimizer and molecular dynamics program. This program
relaxes the structure by iteratively moving the atoms down the energy gradient until a sufficiently low average
gradient is obtained. The molecular dynamics portion generates configurations of the system by integrating
Newtonian equations of motion. MD will sample more configurational space than minimization, and will
allow the structure to cross over small potential energy barriers. Configurations may be saved at regular
intervals during the simulation for later analysis, and basic free energy calculations using thermodynamic
integration may be performed. More elaborate conformational searching and modeling MD studies can also
be carried out using the sander module. This allows a variety of constraints to be added to the basic force
field, and has been designed especially for the types of calculations involved in NMR, Xray or cryo-EM
structure refinement.

pmemd (part of Amber) is a version of sander that is optimized for speed and for parallel scaling; the pmemd.cuda
variant runs on GPUs. The name stands for “Particle Mesh Ewald Molecular Dynamics,” but this code can
now also carry out generalized Born simulations. The input and output have only a few changes from sander.

gem.pmemd (part of AmberTools) is a (CPU-only) variant of the pmemd program that is designed for calculations
using “advanced” force fields, such as AMOEBA[16] and GEM.[17]
1.1.3. Analysis programs

mdout_analyzer.py is a simple-to-run Python script that will provide summaries of information that is in the
output files from sander or pmemd.
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cpptraj is the main trajectory analysis utility (written in C++) for carrying out superpositions, extractions of
coordinates, calculation of bond/angle/dihedral values, atomic positional fluctuations, correlation functions,
analysis of hydrogen bonds, etc. See Chap. 32 for more information.

pytraj is a Python wrapper for cpptraj. It introduces additional flexibility into data analysis by combining with
Python’s rich ecosystems (such as numpy, scipy, and ipython-notebook).

pbsa is an analysis program for solvent-mediated energetics of biomolecules. The pbsa.cuda variant runs on
GPUs. It can be used to perform both electrostatic and non-electrostatic continuum solvation calculations
with input coordinate files from molecular dynamics simulations and other sources (in the pqr format). It
also supports visualization of solvent-mediated electrostatic potentials in various visualization programs.
See Chap. 6 for more information.

MMPBSA.py is a python script that automates energy analysis of snapshots from a molecular dynamics simulation
using ideas generated from continuum solvent models. (There is also an older perl script, called mm_pbsa.pl,
that has similar functionality.)

FEW (Free energy workflow) automates free energy calculations of protein-ligand binding using TI, MM/PBSA-
type, or LIE calculations.

1.2. List of programs

Amber is comprised of a large number of programs designed to aid you in your computational studies of chemical
systems, and the number of released tools grows regularly. This section provides a list of the main programs
included with AmberTools. Each program included in the suite is listed here with a very brief description of its
main function along with a reference to its documentation. For most programs executing it without arguments
prints the usage statement.

AddToBox A program for adding solvent molecules to a crystal cell. See Subsection 18.3.

amb2chm_par.py A program for converting AMBER dat and/or frcmod file(s) into CHARMM PAR file. SeeSub-
section 14.2.4.

amb2chm_psf_crd.py A program for converting AMBER prmtop and inpcrd files into CHARMM PSF and CRD
files. SeeSubsection 14.2.4.

amb2gro_top_gro.py A program for converting AMBER prmtop and inpcrd files into GROMACS top and gro
files. SeeSubsection 14.2.4.

CartHess2FC.py A program to derive the force constants based on Cartesian Hessian matrix using Seminario
method. See Subsection 17.2.5.

car_to_files.py A program program to generate the mol2 and PDB files based on the car file. SeeSubsection
17.2.8.

ChBox A program for changing the box dimensions of an Amber restart file. See Subsection 18.4.

IPMach.py A python program for facilitating the parameterization of the nonbonded models of ions. See Subsec-
tion 17.2.2.

MCPB.py A python version of MCPB with optimized workflow. See Subsection 17.2.1.

MMPBSA.py A program to post-process trajectories to calculate binding free energies according to the MM/PBSA
approximation. See Chapter 34.

mol2rtf.py A program for converting mol2 file into CHARMM RTF file. SeeSubsection 17.2.9.

OptC4.py optimizes the C4 terms in the metal-site-complex of a protein system. See Subsection 17.2.4.
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PdbSearcher.py a python version of Pdbsearcher, a program in MTK++. See Subsection 17.2.3.
PropPDB A program for propagating a PDB structure. See Subsection 18.2

ProScrs.py A program for cutting and capping the protein segment into clusters. SeeSubsection 17.2.7.
UnitCell A program for recreating a crystallographic unit cell from a PDB structure. See Subsection 18.1

amibcc A program called by antechamber to calculate AM1-BCC charges during ligand parametrization. It
can be used as a standalone program, with the options printed when you enter the program name with no
arguments. See Section 15.3

ambpdb A program to convert an Amber system (prmtop and inpcrd/restart) into a PDB, MOL2, or PQR file. See
Section 31.1

ante-MMPBSA.py A program to create the necessary, self-consistent prmtop files for MMPBSA with a single
starting topology file. See Subsection 34.2.2

antechamber A program for parametrizing ligands and other small molecules. See Chapter 15

atomtype A program called by antechamber to judge the atom types in an input structure. It can be used as a
standalone program. See Section 15.3

bondtype A program called by antechamber to judge what types of bonds exist in a given input structure. It can
be used as a standalone program. See Section 15.3

ceinutil.py A program to create a constant Redox Potential input (cein) file. See Section 25.1

cestats A program that computes redox state statistics from constant Redox Potential simulations. See Section
25.6

charmmlipid2amber.py A script that converts a PDB created with the CHARMM-GUI lipid builder into one
recognized by Amber and AmberTools programs.

cpinutil.py A program to create a constant pH input (cpin) file. See Section 24.2

cpeinutil.py A program to create a constant pH and Redox Potential input (cpein) file.

cpptraj A versatile program for trajectory post-processing and data analysis. See Chapter 32

cphstats A program that computes protonation state statistics from constant pH simulations. See Section 24.7
elsize A program that estimates the effective electrostatic size of a given input structure. See Section 4.2.1
espgen A program called by antechamber to generate ESP files during ligand or small molecule parametrization.
espgen.py A python version of espgen. See Subsection 17.2.6.

finddgref.py A program that automatically finds the value of Delta G reference necessary for constant pH and
constant Redox Potential simulations. See Subsection 24.5.1

fixremdcouts.py A program that sorts CPout and/or CEout files from any Replica Exchange simulation, including
MultiD-REMD. See Subsection 23.3.9.4

fitpkaeo.py A program that automatically fits the pKa or standard Redox Potential value of all titratable residues
starting from the output of cphstats or cestats for multiple CPout or CEout files.

ffgbsa A program that calculates MM/GBSA energies as part of the amberlite package.
FEW.pl A program to automate the workflow for free energy calculations. See Chapter 35

gbnsré A program to compute a surface-area-based Generalized Born solvation free energy. See Section 5
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genremdinputs.py A program that generates the input files (mdins, groufile and remd-file) for any Replica Ex-
change simulation, including MultiD-REMD. See Subsection 23.3.3

hcp_getpdb A program that adds necessary sections to a topology (prmtop) file so it can be used for the HCP GB
approximation. See Section 39.5

makeANG_RST A program to create angle restraints for use with sander’s nmropt=1 facility.
makeCHIR_RST A program to create chiral restraint file for use with sander’s nmropt=1 facility

makeDIP_RST.cyana A program to make restraints based on dipole information from CYANA for use with
sander’s nmropt=1 facility

makeDIST_RST A program to make distance restraints for use with sander’s nmropt=1 facility
mdgx An explicit solvent, PME molecular dynamics engine. See Chapter 16

mdout_analyzer.py A script that allows you to rapidly analyze and graph data from sander/pmemd output files.
See Section 31

metalpdb2mol2.py A script that converts PDB files of metal ions to mol2 files, specifically used for MCPB.py
modeling. See Subsection 17.2.10

mm_pbsa.pl Older perl script for performing MM/PBSA calculations. New users are encouraged to use MMPBSA..py
instead.

mm_pbsa_statistics.pl Complementary script to mm_pbsa.pl to compute MM/PBSA statistics from a completed
mm_pbsa calculation.

mm_pbsa_nabnmode Program for performing minimizations and normal mode analyses on biomolecules through
mm_pbsa.pl.

mmpbsa_py_energy A NAB program written to calculate energies for MMPBSA using either GB or PB solvent
models. It can be used as a standalone program that mimics the imin=5 functionality of sander, but it is
called automatically inside MMPBSA. See MMPBSA mdin files as example input files for this program.
Providing the —help or -h flags prints the usage message.

mmpbsa_py_nabnmode A NAB program written to calculate normal mode entropic contributions for MMPBSA.
This can really only be used by MMPBSA.

molsurf A program that calculates a molecular surface area based on input PQR files and a probe radius.

nab Stands for Nucleic Acid Builder. NAB is really a compiler that provides a convenient molecular programming
language loosely based on C. See Chapter 38 and other related chapters.

nfe-umbrella-slice A program to process the biasing potential generated in NFE modules. See Subsection 23.4.8

nmode An outdated program to compute normal modes for biomolecules. You are encouraged to use NAB in-
stead. See Section 39.1

packmol-memgen A workflow for generating membrane simulation systems. See 12.6
mdgx Improves force field parameters by fitting to quantum data. See Chapter 16

parmchk2 A program that analyzes an input force field library file (mol2 or amber prep), and extracts relevant
parameters into an frcmod file. See Subsection 15.1.2

parmed A program for querying and manipulating prmtop files. See Section 14.2

pbsa A program for computing electrostatic and non-electrostatic continuum solvation free energies. See Chapter
6
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pbsa.cuda A GPU-accelerated version of pbsa. See Chapter 6

pdb4amber A program to prepares PDB files for use in LEaP. See Section 12.4

pmemd A performance- and parallel-optimized dynamics engine implementing a subset of sander’s functionality
pmemd.cuda A GPU-accelerated version of pmemd

prepgen A program used as part of antechamber that generates an Amber prep file. See Section 15.3

pytraj A Python program binding to cpptraj. See Section 33

reduce A program for adding or removing hydrogen atoms to a PDB. See Section 12.5

residuegen A program to automate the generation of an Amber residue template (i.e. Amber prep file). See
Subsection 15.4.3

respgen A program called by antechamber to generate RESP input files. See Section 15.3
rismid A 1D-RISM solver. See Section 7.4
rism3d.snglpnt A 3D-RISM solver for single point calculations. See Section 7.6

sander The main engine used for running molecular simulations with Amber. Originally an acronym standing for
Simulated Annealing with Nmr-Derived Energy Restraints.

saxs_rism A program to compute small (wide) angle X-ray scattering curve from 3D-RISM output
saxs_md A program to compute small (wide) angle X-ray scattering curve from MD trajectories
sqm Semiempirical (or Stand-alone) Quantum Mechanics solver. See Chapter 9

tleap A script that calls teLeap with specific setup command-line arguments. See Chapter 13

xleap A script that calls xalLeap with specific setup command-line arguments. See Chapter 13

xparmed A graphical front-end to ParmEd functionality (i.e., parameter file editing and querying). See Section
14.2
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2.1. Basic installation guide

This chapter gives an overview of how to install and test your distribution. Note that the procedure is different
from earlier versions of Amber, relying on CMake rather than make. Once you have downloaded the distribution
files, do the following:

1. First, extract the files in some location (we use /home/xxxx as an example here, but you can install anywhere
that you have write permissions):

cd /home/xxxx
tar xvfj AmberTools20.tar.bz2 # (Note: extracts in an
# “amber20_ src” directory)
tar xvfj Amber20.tar.bz2 # (only if you have licensed Amber 20!)

2. Next, you may need to install some compilers and other libraries. Details depend on what OS you have,
and what is already installed. Package managers can greatly simplify this task. For lists of requirements for
Mac OSX and for many variants of Linux, please visit ambermd.org/Installation.php. In particular, you will
need to have cmake in your PATH. A restriction is that you cannot use the cmake you obtain from a conda
distribution you may have; you will need to use a package manager, or download it from https://cmake.org/.
If you have an existing miniconda distribution, please remove it from your PATH while building Amber.

3. Building with cmake: The Amber development team has recently moved our build system to cmake, with
the conversion being spearheaded by Jamie Smith.
The basic rationale for the move, and instructions on using cmake to build Amber, are at
* ambermd.org/pmwiki/index.php/Main/CMake-Quick-Start
* ambermd.org/pmwiki/pmwiki.php/Main/CMake-Common-Options
e Section 2.2, below.

For most users, the options chosen in the sample script (below) should be OK. Note that with cmake, the
“source” directory (where you extracted the files,) must be different from the installation directory. Thus,
make sure that -DCMAKE_INSTALL_PREFIX is not set to amber20_src in the run_cmake script.

cd amber20_src/build

# optional: edit the run cmake script to make any needed changes;
# most users should not need to do this.

./run_cmake

Next, build and install the code:

make install

4. The installation step will create a resource file amber.sh at your installation directory. This script will set up
your shell environment correctly for Amber:

source /home/xxxx/amber20/amber.sh # for bash, zsh, ksh, etc.

Adding these commands to your login resource file (e.g., ~/.bashrc, ~/.zshrc, etc.) will set up your environ-
ment every time you start a new shell. In particular, it sets the AMBERHOME environment variable, which
is needed for a number of workflows involving Amber. [There is a similar script, amber.csh, for those (few)
who use a C-shell as their interactive script.]
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5. This can be followed by a testing phase. If you have -DINSTALL_TESTS=TRUE in your cmake invocation,
then you can do the following:

cd $AMBERHOME # (this was set in step 4, above)
make test.serial

which will run tests and will report successes or failures.

Where "possible FAILURE" messages are found, go to the indicated directory under $AMBERHOME /AmberTools/test
or $AMBERHOME/test, and look at the "*.dif" files. Differences should involve round-off in the final digit

printed, or occasional messages that differ from machine to machine (see below for details). As with compi-

lation, if you have trouble with individual tests, you may wish to comment out certain lines in the Makefiles

(i.e., SAMBERHOME /AmberTools/test/Makefile Or $AMBERHOME/test/Makefile), and/or go directly to

the test subdirectories to examine the inputs and outputs in detail. For convenience, all of the failure mes-

sages and differences are collected in the SAMBERHOME/logs directory; you can quickly see from these if

there is anything more than round-off errors.

The nature of molecular dynamics is such that the course of the calculation is very dependent on the order
of arithmetical operations and the machine arithmetic implementation, i.e., the method used for round-off.
Because each step of the calculation depends on the results of the previous step, the slightest difference
will eventually lead to a divergence in trajectories. As an initially identical dynamics run progresses on
two different machines, the trajectories will eventually become completely uncorrelated. Neither of them
are "wrong;" they are just exploring different regions of phase space. Hence, states at the end of long
simulations are not very useful for verifying correctness. Averages are meaningful, provided that normal
statistical fluctuations are taken into account. "Different machines" in this context means any difference in
floating point hardware, word size, or rounding modes, as well as any differences in compilers or libraries.
Differences in the order of arithmetic operations will affect round-off behavior; (a + b) + ¢ is not necessarily
the same as a + (b + c). Different optimization levels will affect operation order, and may therefore affect
the course of the calculations.

All initial values reported as integers should be identical. The energies and temperatures on the first cycle
should be identical. The RMS and MAX gradients reported in sander are often more precision sensitive
than the energies, and may vary by 1 in the last figure on some machines. In minimization and dynamics
calculations, it is not unusual to see small divergences in behavior after as little as 100-200 cycles.

Note: If you have untarred the amber20.tar.bz2 file, then steps 1-6 will install and test both AmberTools
and Amber; otherwise it will just install and test AmberTools. If you license Amber later, just come back and
repeat steps 1-6 again.

6. If you are new to Amber, you should look at the tutorials (available at https://ambermd.org/tutorials)
and this manual in order to become familiar with the Amber features and functionalities.

7. Installation instructions for the GPU-accelerated versions of pmemd, cpptraj and pbsa are available in Sec-
tion 20.6.5.

8. In order to compile the parallel (MPI) version of Amber, follow these steps (after successfully installing the
serial version).

a) You must first ensure that you have installed MPI and that mpicc and mpif90 are in your PATH. Some
MPI installations are tuned to particular hardware (such as InfiniBand), and you should use those
versions if you have such hardware. Most people can use standard versions of either mpich or
openmpi obtained from a package manager, but these must correspond to the compilers you are using.
For many users, especially for Mac OSX, the easiest approach is the following:

cd $AMBERHOME/AmberTools/src
./configure mpich <compiler>

This will build the mpich MPI stack with what is needed for Amber, and install it in SAMBERHOME.
If you wish, you can replace configure_mpich with configure_openmpi above. (For MacOSX, use clang
as the compiler, unless you are using GNU compilers you intalled yourself).
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b) Then do the following:

cd /home/xxxx/amber20_ src/build

# edit the run_cmake script to set -DMPI=TRUE

./run_cmake

make install

# To run tests: Note the value below may depend on your MPI implementation
export DO_PARALLEL="mpirun -np 2"

cd $AMBERHOME

source amber.sh

make test.parallel

# Note, some tests, like the replica exchange tests, require more
# than 2 threads, so we suggest that you test with either 4 or 8
# threads as well

export DO_PARALLEL="mpirun -np 4"

make test.parallel

Some notes about the parallel programs in AmberTools:

a) The MPI version of nab is called mpinab, by analogy with mpicc or mpif90: mpinab is a compiler
that will produce an MPI-enabled executable from source code written in the NAB language. Before
compiling mpinab, be sure that you are familiar with the serial version of nab and that you really need a
parallel version. If you have shared-memory nodes, the OpenMP version might be a better alternative.
(Note that mpinab is primarily designed to write driver routines that call MPI versions of the energy
functions; it is not set up to write your own, novel, parallel codes.)

b) The MPI version of MMPBSA.py is called MMPBSA.py.MPI, and requires the package mpi4py to run.
If it is not present in your Python standard library already, it will be built along with MMPBSA.py.MPI
and placed in the $aMBERHOME prefix. If you have problems with MMPBSA.py.MPI, see if you get
the same problems with the serial version, MMPBSA.py, to see if it is an issue with the parallel
version or MMPBSA.py in general. Because we do not make or maintain the mpi4py source code,
MMPBSA.py.MPI will not be available on platforms on which mpi4py cannot be built.

2.2. The cmake build system in Amber

This section will walk you through performing certain common tasks with the CMake build system. Note: this
is fairly advanced information; for a more gentle introduction, please visit these pages:

e CMake Quick Start Guide

¢ CMake Common Options

2.2.1. Using MPI and OpenMP

MPI and OpenMP provide different methods of parallelizing Amber -- MPI at the process level, and OpenMP at
the thread level. MPI takes the form of one or more libraries that Amber needs to link with, while OpenMP requires
compiler support and is activated by a specific compiler flag. If you are working in a high-performance computing
environment, then there will usually be a specific system MPI installation compatible with your hardware that you
are supposed to use. Make sure to find out what that is and where it’s installed before going any further.

You can enable MPI in the CMake build system by passing the -DMPI=TRUE flag. This will enable use of
MPI in all programs that support it. For each of these programs, the standard (serial) version will still be built,
and an additional version with MPI support, usually identified by the ".MPI" suffix appended to the name, will be
compiled.

Traditionally, MPI is integrated into programs’ build systems by telling them to use special "compiler wrappers"
that automatically apply the needed flags and libraries for MPI before calling the real compiler. However, Amber
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does not use these, since it would make it impossible to compile executables without MPI support. Instead,
Amber makes use of CMake’s FindMPI module, which extracts the compiler flags from the MPI wrappers and
lets CMake use them only where needed. By default, FindMPI will search for MPI compiler wrappers (e.g.
mpicc, mpicxx, or mpif95) on your PATH and use the settings from the first one it finds. If you want to select a
different MPI implementation, you can define (-D) the variables MPI_C_COMPILER, MPI_CXX_COMPILER,
and MPI_Fortran_COMPILER to point to the MPI wrappers for their respective languages. Or, with CMake >=
3.9 installed, you can define MPIEXEC_EXECUTABLE to point to the location of a mpiexec executable, and
CMake will attempt to find the MPI that is installed in the same directory as it. For even more information, Refer
to Cmake’s FindMPI docs.

OpenMP can be enabled using the -DOPENMP=TRUE, and thankfully the process for configuring it is not as
convoluted. CMake is aware of the needed OpenMP flags for all supported compilers and will automatically find
one that works. If none is available, an error will be printed. Similarly to MPI, once OpenMP is enabled an
alternate version of all supported programs will be made that has a ".OMP" suffix.

2.2.2. Using CUDA

CUDA is NVidia’s software development kit for creating custom applications that run on NVidia GPUs. Amber
primarily uses CUDA in pmemd.cuda, but it’s also used to accelerate several other applications in AmberTools,
such as pbsa and cpptraj. You can enable CUDA in the CMake build system using -DCUDA=TRUE. This will
build CUDA versions of all applications that support it. MPI CUDA versions will also be built if MPI is enabled.

Currently Amber supports CUDA versions from 7.5 to 10.2 inclusive. However, older versions are less well
tested and more likely to cause issues, and you may also run into trouble with the CUDA SDK being incompatible
with newer compilers on your machine. So, it’s better to use one of the newer CUDA versions if possible. Note
that the compilation of complex CUDA code such as Amber’s is extremely CPU and memory intensive, so CUDA
builds are much slower than those of other languages. It is not abnormal for the compilation of a single source file
to take several minutes, and for the compilation of all of pmemd.cuda to take close to an hour.

By default, CMake will search for the CUDA compiler executable (nvcc) on your PATH and use the CUDA
installation associated with it. To specify a certain install location, define the CUDA_TOOLKIT_ROOT_DIR
variable, e.g. -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-8.0. The Amber build system uses CMake’s
legacy FindCUDA module and will continue to for the forseeable future. So, information related to CUDA that is
for newer versions of CMake may not be accurate. Instead, refer to the FindCUDA docs for infornation.

Starting with Amber 20, Amber supports use of the NVidia NCCL library for communications between mul-
tiple GPUs, which an provide a performance improvement over plain MPI. If the library is enabled (using -
DNCCL=TRUE), then it will be activated when pmemd.MPI.cuda is run on 3 or more GPUs.

2.2.3. Controlling External Libraries

Amber can use, for one purpose or another, a great variety of third-party libraries. Some, such as NetCDF,
FFTW, and boost, are core components of many programs and as such must be enabled for the build to succeed.
Others are only optional and Amber can work just fine without them. The complete description of what these
libraries do and how to use them is too complex for here and is left to the relevant sections of the manual. Instead,
this section will instead focus on the build system’s tools for managing them.

After the configuration finishes, the build system will print a build report showing all libraries used. Here’s an
example from my system:

- 3rd Party Libraries
————— building bundled:
—— ucpp - used as a preprocessor for the NAB compiler

—— netcdf-fortran - for creating trajectory data files from Fortran
—— pnetcdf - used by cpptraj for parallel trajectory output

—-— readline - used for the console functionality of cpptraj

—— xblas - used for high-precision linear algebra calculations

—- mpi4py - MPI support library for MMPBSA.py

----- using installed:
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—— arpack - for fundamental linear algebra calculations

—— netcdf - for creating trajectory data files

—— fftw - used to do Fourier transforms very quickly

—— apbs - used by Sander as an alternate Poisson-Boltzmann equation solver
—- zlib - for various compression and decompression tasks

—— libbz2 - for bzip2 compression in cpptraj

—— plumed - used as an alternate MD backend for Sander

—— libm - for fundamental math routines if they are not contained in the C library
—— mkl - alternate implementation of lapack and blas that is tuned for speed
—— perlmol - chemistry library used by FEW

—- boost - C++ support library

—— nccl - NVIDIA parallel GPU communication library

—— mbx - computes energies and forces for pmemd with the MB-pol model

—— blas - for fundamental linear algebra calculations

—— lapack - for fundamental linear algebra calculations

—-— c9x-complex - used as a support library on systems that do not have C99 complex.h support
—— lio - used by Sander to run certain QM routines on the GPU

—— pupil - used by Sander as an alternate user interface

There are a lot of important details in this report. The "canonical" name of each library is listed, along with
its description. You’ll also notice that each library is listed as either "bundled", "installed", or "disabled". This
indicates where the build system found each library.

With some exceptions, Amber will automatically find and use libraries it finds on the system, marking them as
installed. You’ll see output from these detections earlier in the build, with a message explaining why it couldn’t
find each library that is missing and what info it needs to locate it. If you don’t need the library active you can
ignore these messages, but otherwise you can use that information to determine what variables to define. For
example, if you saw this output:

—— Could NOT find PnetCDF_C (missing: PnetCDF_C_LIBRARY PnetCDF_C_INCLUDE_DIR)
you could help CMake find the library with the following command:

cmake <path to source> -DPnetCDF_C_LIBRARY=<path to libpnetcdf.so> \
-DPnetCDF_C_INCLUDE_DIR=<path to folder containing pnetcdf.h>

To find libraries when the paths aren’t specified directly, CMake uses a specific search path which generally con-
tains all the system directories. But what if you have certain libraries installed to a nonstandard directory? The
easiest way to help CMake find those libraries is by defining the variable CMAKE_PREFIX_PATH. This can be
set to one path or a semicolon-separated list, and each of these paths will be searched like a standard Unix prefix:
<path>/bin for programs, <path>/lib for libraries, and <path>/include for headers. If you’ve used Autoconf build
systems before this is similar to the --prefix option, though it does not control the install directory.

Unlike many other CMake build systems, Amber is smart enough to automatically find and use new libraries
that have been installed on the system after the initial configuration has been run. So, you should be able to pick
up new libraries just by running cmake on a previously configured build directory. However, there are still some
situations that will require you to delete and recreate the build directly completely, such as if the build or source
directory is moved or if an external library is deleted or moved to a new location.

For many libraries which are required and are not commonly found on people’s systems, Amber provides bun-
dled versions to make users’ lives easier. These bundled versions are automatically compiled and installed along
with Amber, and should work seamlessly. They also are guaranteed to get built with the same environment and
settings as Amber, removing a common source of problems. However, they do increase the binary size and can
cause conflicts with libraries already installed on the system, so especially if you are packaging Amber, you may
wish to use the external versions.

In the past, the Amber developers have had trouble with user issues related to broken installations of cer-
tain libraries on certain common OSs. To combat this, the decision was made to prevent Amber from linking
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to certain libraries by default unless specifically told to. As of Amber 20, these libraries are netcdf, netcdf-
fortran, boost, mkl, and arpack. To disable this behavior and use all found libraries, you can use the option
-DTRUST_SYSTEM_LIBS=TRUE.

Sometimes, even more fine-grained control over 3rd party libraries is needed, such as if a specific 3rd party
library is found but fails to link and you want to disable it. For this purpose, three override options are pro-
vided: FORCE_DISABLE_LIBS, FORCE_INTERNAL_LIBS, and FORCE_EXTERNAL_LIBS. These accept
semicolon-separated lists of library names. FORCE_DISABLE_LIBS will force Amber to build without a given
library, and will print an error if that library is required. FORCE_INTERNAL_LIBS will tell Amber to prefer the
internal version of a bundled library. Finally, FORCE_EXTERNAL_LIBS will tell Amber to prefer the version of
a library that is installed on the system.

One last thing: keep in mind that these variables are lists and the entire list is set at once. Suppose you
had previously disabled MKL because of a link error, using -DFORCE_DISABLE_LIBS=mkl. Then, a build
error occurs with mpidpy and you want to disable that too. It’s fine to run CMake again without passing the
FORCE_DISABLE_LIBS option, but when you change it you need to pass the full new value so the mkl entry
isn’t erased. So, the argument to use would be -DFORCE_DISABLE_LIBS=mkl;mpi4py.

2.2.4. Selecting BLAS and MKL

Almost all Amber programs require access to the BLAS (Basic Linear Algebra Subprograms) and LAPACK
(Linear Algebra PACKage) libraries for computing various matrix operations. By default, Amber uses the vener-
able Netlib implementations of these libraries, which are widely compatible, but are not the best optimized. Over
time, several optimized versions of BLAS and LAPACK have been produced, which can offer performance in-
creases of 50%-1000% on large matrix operations. If you are building Amber for a high performance computing
environment, it is highly recommended to make use of an optimized BLAS implementation. Popular options in-
clude OpenBLAS, which is free and supports a wide variety of platforms, and MKL, which is more extensive and
may provide better performance on Intel chips.

Non-MKL BLAS implementations are handled using CMake’s FindBLAS and FindLAPACK modules. These
know about and search for a variety of BLAS and LAPACK implementations, including Netlib, OpenBLAS, and
Macs’ Accelerate framework. To force them to search for these specific versions of BLAS and LAPACK, you can
set the BLA_VENDOR variable to "Generic", "OpenBLAS", or "Apple" respectively. The full list is documented
here. If your BLAS is installed to a nonstandard location, you may need to add it to the CMake search path using
the methods in the previous section.

MKL, however, is a special case. It is a very complicated library that is difficult to link properly on all systems, so
it is not found by default to reduce the chance of errors. To enable it, either pass -DTRUST_SYSTEM_LIBS=TRUE
or -DFORCE_EXTERNAL_LIBS=mkl (see above). Amber will then search for MKL in its default install location,
such as /opt/intel/mkl on Linux. The environment variables MKL_HOME and MKLROOT will also be checked
if they are defined. If MKL is installed to a different location, or if you need to select a specific version, define
the MKL_HOME CMake variable to point to MKL’s install directory. MKL can be used in two modes: threaded
or serial. Threaded mode provides the option for MKL to split calculations across multiple threads internally (ex-
actly how it does this is configured using environment variables). By default Amber will attempt to link MKL
in threaded mode, but if this causes problems (it requires that your compiler have an OpenMP implementation
supported by MKL) then you can use -DMKL_MULTI_THREADED=FALSE to turn this off. Also, if you want
Amber to use the MKL static libraries, you can pass the -DMKL_STATIC=TRUE option. Unfortunately, due to
how CMake find modules work, this option only takes effect the first time CMake is run.

2.2.5. Configuring Python

A substantial amount of Amber programs either are written in or provide interfaces to Python. Unfortunately,
Python installations tend to vary wildly across different systems, and Python programs are very prone to issues
with dependencies on native libraries as well as other Python libraries. So, Amber supports three different Python
configurations for different systems and setups.

1. The first option, and the one that is used by default, is to let Amber control the Python distribution en-
tirely. This is best if your system python environment is broken, unpredictable, or uncontrolled. Amber
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will download a self-contained Continuum Miniconda python interpreter when CMake is run for the first
time and will manage it entirely itself. In Amber 20, Python 3 is used by default, but you can use -
DMINICONDA_USE_PY3=FALSE to download Python 2 instead. Once Amber is installed, you can access
Amber’s miniconda via the amber.python symlink in the install directory. Using miniconda will eliminate
the chance of a conflict between Amber’s binaries and dependencies and your system Python interpreter.
However, there are some downsides: it takes up a fair amount of space, on the order of a gigabyte, and
since it’s a separate interpreter, packages that you have installed to other interpreters won’t be able to easily
interoperate with Amber. Finally, when using miniconda, you can’t move the Amber install folder from
its original location. However, it’s still a reliable option for new users and those with problematic Python
environments.

2. Another popular option for Amber python is to use Anaconda. If you haven’t heard of it, Anaconda is
a scientific python distribution, but it’s also practically a miniature Linux distro, containing a huge array
of binary libraries that are installed along with the Python packages that need them. This can be very
helpful because it already includes a lot of the libraries needed by Amber, such as MKL and openblas.
And unlike using internal Miniconda, using your system Anaconda means Amber can interoperate with
other packages and programs installed to that interpreter. However, Anaconda has its own caveat: since
it includes its own versions of system libraries, the Anaconda interpreter sometimes won’t be able to load
Amber libraries that link to the system versions of those same libraries. Also, there are situations where
Anaconda’s internal libraries can conflict with system libraries and cause programs to fail to build or run.
Phew, have I confused you yet? Yeah, shared library dependencies are the pits. To use Anaconda as a python
interpreter only, all that is needed is to disable Miniconda (-DDOWNLOAD_MINICONDA=FALSE) and
activate your conda env before you build Amber. Just make sure to keep the conda env active whenever
you use Amber, and everything should work fine. To also link libraries from Anaconda by default, use -
DUSE_CONDA_LIBS=TRUE (this must be passed the first time you run CMake). The build system will
search for the conda executable in your PATH, find your Anaconda installation, and add it to the front of the
library search path.

3. Your final option is to just use your existing system Python interpreter. Set DOWNLOAD_MINICONDA to
FALSE, and let CMake find your Python interpreter on the PATH. By default it will prefer the latest versioned
python available, so python3.6 would be found before python2.7. To select a different interpreter, set the
PYTHON_EXECUTABLE variable to point to it. Amber requires certain Python packages be installed:
currently numpy, scipy, matplotlib, cython, setuptools, and tkinter. You can install these through your distro’s
package manager or through pip. If you don’t have root access, the pip install --user command is your friend
since it will install to your home directory instead of the system dirs. Compared to the legacy build system,
Amber’s CMake build system now has much-improved support for working with your system Python, and
it should work fine on most system. However, there can still be issues, so we recommend switching to
Anaconda or Miniconda if the system installation is not working for you.

2.2.6. Configuring Amber Settings

There are a few other commonly used Amber build options that it’s worth being aware of. Ever had an Amber
tool that you didn’t care about fail to build, and you just wish you could make it disappear? Well now you can,
with DISABLE_TOOLS! Just pass it a semicolon-separated list of tools (folder names under AmberTools/src/ or
src/) to this option, and it will prevent them from building. A note will be added at the bottom of the build report
saying which tools you’ve disabled. It also tracks dependencies between tools, so disabling something that other
things depend on will properly disable the dependers instead of causing build errors.

Another useful option is the STATIC flag. This will cause all Amber executables and libraries to be linked
statically. This means that they don’t depend on any other libraries from Amber and can be moved anywhere or
to any other machine (as long as the same system libraries are present). It also may provide a performance boost
to some programs by removing the overhead of resolving symbols in shared libraries, though this has not been
measured.

Finally, Amber has two different ways of running tests, controlled by the INSTALL_TESTS option. With
INSTALL_TESTS enabled, all Amber and AmberTools tests are installed to the install prefix, and can be run with
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the standard commands using the Makefile there. This makes the installation totally independent of the source dir,
which is convenient for packaging or distributing Amber. However, there are some downsides: the tests are quite
large, taking up a gigabyte or more of space. Copying them from the source folder will eat up even more of your
disk and make the install process take quite a bit longer. If you’re planning on keeping the source directory around
then it might make more sense to leave INSTALL_TESTS disabled. In this configuration, the tests will not be
installed and you must run them out of the source directory after sourcing amber.sh.

Several other common tasks are covered with more in-depth guides:

¢ Cross-compiling Amber

* Creating packages (includes Linux deb/rpm packages, OS X DMG packages, and Windows installers)

2.2.7. Debugging the Build

Last but not least, there are several options that are very useful when things go haywire in the build.

You’ll notice pretty quickly when building that CMake chooses to omit the full compiler command in favor of
a pretty-looking filename and progress percentage only. This is nice most of the time, but can be a problem if a
compile command is failing and you aren’t sure why. Luckily, CMake has a handy option for these situations:
CMAKE_VERBOSE_MAKEFILE. Setting it to TRUE will cause it to print out the full compiler command for
each file. As a shortcut, if you are using Makefiles, then you can run make VERBOSE=1 to trigger the same
behavior without rerunning CMake.

But what if you’re sure that Amber is being compiled correctly, but it’s having trouble linking to an external
library? This is where -DPRINT_PACKAGING_REPORT=TRUE can help. This will cause Amber to print a
detailed list of all the libraries that it is linking to on your system and where they are located. It’s mainly meant
to help analyze dependencies for packaging, but it’s also convenient as a general purpose debugging tool in case
Amber is linking to something it shouldn’t be.

2.3. Python in Amber

The Python programming language is the language of several key components of Amber. In addition to stan-
dalone programs like MMPBSA.py, MCPB.py, and ParmEd, a growing number of components also expose a
substantial fraction of Amber functionality through Python APIs, like pysander, ParmEd, and pytraj.

If you point cmake to a python interpreter (by setting -DPYTHON_EXECUTABLE=/path/to/python), that will
be used if has the necessary components installed. Otherwise, you will be notified and asked if you want to install
Miniconda. If so, cmake will download and install this version, which can either be miniconda2 or miniconda3.
Making use of this download facility is recommended for most users; if you choose to use some other python
installation, you should know what you are doing, and how to install the needed components, which include numpy,
scipy, cython, ipython, notebook, matplotlib. Users can access this Python via SAMBERHOME/bin/amber.python.

By default, AmberTools attempts to install Python packages to $AMBERHOME/1ib/pythonX.Y, where X.Y is the
version of Python that was found (or assigned) by cmake. The amber.sh resource script then adds this path to your
PYTHONPATH environment variable to ensure that the Python runtime can find these packages.

Users are encouraged to use Python versions 2.7 and 3.4 (or greater) since those versions have been verified
to work with all Python components of Amber (assuming other prerequisites, like numpy and/or scipy are met).
Different components of AmberTools support different versions of Python. Some codes (like pytraj, ParmEd and
pdbd4amber) work unchanged in both Python 2.7 and Python 3.x, while others need to be converted using 2t03
upon installation. If users plan to combine AmberTools (such as pysander, ParmEd) with third party packages then
they they need to be careful. For example, circa 2017 Phenix and PyRosetta did not support Python 3.x, so users
would need to use Python 2.7.

2.4. Applying Updates

For most users, simply running cmake and responding ‘yes’ to the update request will automatically download
and apply all patches. This section describes the main updating script responsible for managing updates. We
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2.4. Applying Updates

suggest that you at least skim the first section on the basic usage—particularly the note about the --version flag
for if/when you ask for help on the mailing list.

2.4.1. Basic Usage

Updates to AmberTools and Amber are downloaded, applied, and managed automatically using the Python
script update_amber. This script works on every version of Python from Python 2.4 through the latest Python 3
release. To use this command manually, you must refer to the “source” directory, i.e. the folder headed by
“amber20_src” where you downloaded the codes. Here, we are going to assume that you have set your
AMBERSOURCE environment variable to this directory, say by typing the command:

export AMBERSOURCE=/path/to/amber20_src

Please substitute /path/to amber20_src with the appropriate path for your machine: this will be the folder where
you un-tarred the distribution. Now there are three basic update-related commands:

* $AMBERSOURCE/update_amber —-check-updates : This option will query the Amber website for any
updates that have been posted that have not been applied to your installation. If you think you have found a
bug, this is helpful to try first before emailing with problems since your bug may have already been fixed.

* $SAMBERSOURCE/update_amber —-version : This option will return which patches have been applied to
the current tree so far. When emailing the Amber list with problems, it is important to have the output of this
command, since that lets us know exactly which updates have been applied.

* SAMBERSOURCE/update_amber --update : This option will go to the Amber website, download all updates
that have not been applied to your installation, and apply them to the source code. Note that you will
have to recompile any affected code for the changes to take effect! Todo this, go to your
build directory and re-rerun the cmake command you used in Step 3 of Section 2.1.

2.4.2. Advanced options

update_amber has additional functionality as well that allows more intimate control over the patching process.
For a full list of options, use the ——full-help command-line option. These are considered advanced options.

* $AMBERSOURCE/update_amber —-download-patches : Only download patches, do not apply them
* $AMBERSOURCE/update_amber —-apply-patch=<PATCH>: This will apply a third-party patch

* $AMBERSOURCE/update_amber —-reverse-patch=<PATCH> : Reverses a third-party patch file that was
applied via the —-apply-patch option (see above).

* $AMBERSOURCE/update_amber --show-applied-patches: Shows details about each patch that has been
applied (including third-party patches)

* SAMBERSOURCE/update_amber —-show-unapplied-patches : Shows details about each patch that has
been downloaded but not yet applied.

* SAMBERSOURCE/update_amber --remove-unapplied : Deletes all patches that have been downloaded but
not applied. This will force update_amber to download a fresh copy of that patch.

* $AMBERSOURCE/update_amber —-update-to AmberTools/#,Amber/# : This command will apply all
patches necessary to bring AmberTools up to a specific version and Amber up to a specific version. Note,
no updates will ever be reversed using this command. You may specify only an AmberTools version or an
Amber version (or both, comma-delimited). No patches are applied to an omitted branch.

* SAMBERSOURCE/update_amber —-revert-to AmberTools/#,Amber/# : This command does the same
as ——update-to described above, except it will only reverse patches, never apply them.
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update_amber will also provide varying amounts of information about each patch based on the verbosity setting.
The verbose level can be set with the —-verbose flag and can be any integer between 0 and 4, inclusive. The
default verbosity level changes based on how many updates must be described. If only a small number of updates
need be described, all details are printed out. The more updates that must be described, the less information is
printed. If you manually set a value on the command-line, it will override the default. These values are described
below (each level prints all information from the levels before plus additional information):

¢ 0: Print out only the name of the update file (no other information)

 1: Also prints out the name of the program(s) that are affected

e 2: Also prints out the description of the update written by the author of that update.

* 3: Also prints the name of the person that authored the patch and the date it was created.

* 4: Also prints out the name of every file that is modified by the patch.

2.4.3. Internet Connection Settings

If update_amber ever needs to connect to the internet, it will check to see if http://ambermd.org can be contacted
within 10 seconds. If not, it will report an error and quit. If your connection speed is particularly slow, you can
lengthen this timeout via the —-t imeout command-line flag (where the time is given in seconds).

Proxies By default, update_amber will attempt to contact the internet through the same mechanism as
programs like wget and curl. For users that connect to the internet through a proxy server, you can either set the
http_proxy environment variable yourself (in which case you can ignore the rest of the advice about proxies
here), or you can configure update_amber to connect to the internet through a proxy. To set up update_amber to
connect to the internet through a proxy, use the following command:

$AMBERSOURCE/update_amber ——-proxy=<PROXY_ ADDRESS>

You can often find your proxy address from your IT department or the preferences in your favorite (configured)
web browser that you use to surf the web. If your proxy is authenticated, you will also need to set up a user:

$AMBERSOURCE/update_amber --proxy-user=<USERNAME>

If you have set up a user name to connect to your proxy, then you will be asked for your proxy password the first
time update_amber attempts to utilize an online resource. (For security, your password is never stored, and will
need to be retyped every time update_amber runs).

You can clear all proxy information using the --delete-proxy command-line flag—this is really only necessary
if you no longer need to connect through any proxy, since each time you configure a particular proxy user or server
it overwrites whatever was set before.

Mirrors If you would like to download Amber patches from another website or even a folder on a local filesystem,
you can use the ——amber-updates and ——ambertools-updates command-line flags to specify a particular web
address (must start with http://) or a local folder (use an absolute path). You can use the —-reset-remotes
command-line flag to erase these settings and return to the default Amber locations on http://ambermd.org.

If you set up online mirrors and never plan on connecting directly to http://ambermd.org, you can change
the web address that update_amber attempts to connect to when it verifies an internet connection using the
-—internet-check command-line option.

30



2.5. Installation using the old (legacy) build system

2.5. Installation using the old (legacy) build system

The transition of our build system to cmake (described above) offers many advantages. This system has been
tested on many variants of Linux and MacOSX, but we recognize that there may well be a period of adjustment,
since the setup of compilers and installed libraries can vary a lot from machine to machine. This section gives an
overview of how to install and test your distribution using the older (aka “legacy”) build system. You may find it
useful if cmake doesn’t work for you. Once you have downloaded the distribution files, do the following:

1. First, extract the files in some location (we use /home/myname as an example here):

cd /home/myname
tar xvfj AmberTools20.tar.bz2 # (Note: extracts in an
# “amber20_src” directory)
tar xvfj Amber20.tar.bz2 # (only if you have licensed Amber 20!)

2. Next, set your AMBERHOME environment variable:

export AMBERHOME=/home/myname/amber20_src # (for bash, zsh, ksh, etc.)
setenv AMBERHOME /home/myname/amber20_src # (for csh, tcsh)

Be sure to change the “/home/myname” above to whatever directory is appropriate for your machine, and
be sure that you have write permissions in the directory tree you choose. (In general, you should not install
application software, e.g., Amber, as root.)

3. Next, you may need to install some compilers and other libraries. Details depend on what OS you have, and
what is already installed. Package managers can greatly simplify this task. See http://ambermd.org/amber_install. html
for more information, and for requirements for other variants of Linux, and for Macintosh OSX.

4. Now, in the AMBERHOME directory, run the configure script:

cd $AMBERHOME
./configure --help

will show you the options. Choose the compiler and flags you want; for most systems, the following should
work:

./configure gnu

This step will also check to see if there are any updates and bug fixes that have not been applied to your
installation, and will apply them (unless you ask it not to). If the configure step finds missing libraries, go
back to Step 3. This step will also ask if you want to install a compatible Python executable for the Python
programs in Amber (including MMPBSA.py, MCPB.py, ParmEd, pysander, pytraj, pdb4amber, and the rest
of amberlite). Since Amber now requires Python 2.7 or later, along with numpy, scipy, and matplotlib to
enable all of its functionality, configure now provides an option to download a compatible Python from
Continuum IO (via miniconda) and install it in the Amber directory for use with Amber programs. See
Section 2.3 for more details. If your default Python has the required prerequisites installed, configure will
simply select that Python for use with Amber.

Do not choose any parallel options at this step! You will need to install the serial version first; options for
parallel builds are described below at Step 8.

5. The configure step will create two resource files in the AMBERHOME directory: amber.sh and amber.csh.
These sourceable scripts will set up your shell environment correctly for Amber:

source /home/myname/amber20_src/amber.sh # for bash, zsh, ksh, etc.
source /home/myname/amber20_src/amber.csh # for csh, tcsh

Of course, /home/myname/amber18 should be adjusted for your AMBERHOME. Adding these commands
to your login resource file (e.g., ~/.bashrc, ~/.cshrc, ~/.zshrc, etc.) will set up your environment every time
you start a new shell. Note, this step is absolutely necessary to run any of the Python modules included with
Amber.
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6. Then,

10.

make install

will compile the codes. If this step fails, read the error messages carefully to try to identify the problem.

. This can be followed by

make test

which will run tests and will report successes or failures. See the discussion above about how to interpret
test results.

. If you are new to Amber, you should look at the tutorials and this manual and become familiar with how

things work. If and when you wish to compile parallel (MPI) versions of Amber, do this:

cd $AMBERHOME

./configure -mpi <....other options....> <compiler-choice>

make install

# Note the value below may depend on your MPI implementation
export DO_PARALLEL="mpirun -np 2"

make test

# Note, some tests, like the replica exchange tests, require more
# than 2 threads, so we suggest that you test with either 4 or 8
# threads as well

export DO_PARALLEL="mpirun -np 8"

make test

This assumes that you have installed MPI and that mpicc and mpif90 are in your PATH. Some MPI
installations are tuned to particular hardware (such as InfiniBand), and you should use those versions if you
have such hardware. Most people can use standard versions of either mpich or openmpi. To install one of
these, use one of the simple scripts that we have prepared:

cd $AMBERHOME/AmberTools/src
./configure_mpich <compiler-choice> OR
./configure_openmpi <compiler-choice>

Follow the instructions of these scripts, then return to the beginning of step 7.
See Section 20.6.5 for information about installing the GPU-accelerated versions of pmemd.

See Section 6.6.4 for information about installing the GPU-accelerated version of pbsa.

2.6. Contacting the developers
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Please send suggestions and questions to amber@ambermd.org. You need to be subscribed to post there; to
subscribe, go to http.://lists.ambermd.org/mailman/listinfo/amber. You can unsubscribe from this mailing list on
the same site.
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3. Molecular mechanics force fields

Amber is designed to work with several simple types of force fields, although it is most commonly used with
parametrizations developed by Peter Kollman and his co-workers and “descendents”. The traditional parametriza-
tion uses fixed partial charges, centered on atoms. Less commonly used modifications add polarizable dipoles to
atoms, so that the charge description depends upon the environment; such potentials are called “polarizable” or
“non-additive”. An alternative is to use force fields originally developed for the CHARMM or Tinker (AMOEBA)
codes; these require a different setup procedure, which is described in Sections 14.2.2.8 (for CHARMM) and
Chapter 30 (for AMOEBA). Chapter 14 provides a basic introduction to force fields, along with details of how the
parameters are encoded in Amber files.

In previous versions of AmberTools, we including “combined” leaprc files (such as leaprc.ff14SB) that loaded,
protein, nucleic acid and water models that worked well together. This was convenient for most users, but tended
to obfuscate the important issue of deciding which force fields to use. Since various choices make good sense,
we have implemented a new scheme for users to specify the force fields they wish to use. Depending on what
components are in your system, you may need to specify:

/ * a protein force field (recommended choice is ff14SB) \
¢ a DNA force field (recommended choice is OL15)

¢ an RNA force field (recommended choice is OL3)
* a carbohydrate force field (recommended choice is GLYCAM_06j)
* alipid force field (recommended choice is lipid17)

¢ a water model with associated atomic ions (more variable, but the most common choice is still zip3p); other
popular choices are spc/e, tip4pew, and OPC. Not needed if you are using an implicit solvent model.

* a general force field, for organic molecules like ligands (recommended choice is gaff2)

& * other components (such as modified amino acids or nucleotides, other ions), as needed /

Notes:

1. You have to be careful if you try to adopt a “mix and match” strategy for different components. The recom-
mended choices are designed to work well together, and have been fairly extensively tested. Use of other
combinations requires a deeper knowledge of the nature and origin of force fields; see below and consult the
original papers for more information. If you wish to combine proteins with nucleic acids, only the recom-
mended combination above (or one where leaprc. DNA.OLI5 is replaced with leaprc. DNA.bscl) is allowed.

2. In general, your input file to LEaP will begin with several commands to source the relevant leaprc files. For
example the following preamble would allow you to include proteins, DNA, lipids, general components,
water, and atomic ions like Na+ or Cl-, using the current recommended force fields:

source leaprc.protein.ff14SB
source leaprc.DNA.OL15
source leaprc.lipidl?

source leaprc.water.tip3p
source leaprc.gaff2
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Note that explicit solvent simulations now require you to load a leaprc.water.xxxx file; this is a change
from AmberTools15 and earlier versions, where the TIP3P water model was loaded by default. The change
reflects the growing awareness[ 18] within the modeling community that TIP3P should no longer be assumed
as appropriate for every type of biomolecular simulation, and that the use of more modern water models
instead can offer clear accuracy improvements in a rapidly increasing number of situations, see below.

3. There are some leaprec files for older force fields in the SAMBERHOME/dat/leap/cmd/oldff directory. We no
longer recommend these combinations, but we recognize that there may be reasons to use them, especially
for comparisons to older simulations. See Section 3.12 for more information.

4. In particular, the leaprc.ff14SB file, in the oldff/ directory, is identical to the file of the same name in Amber-
Tools15. In spite of its name, it is a “combined” file, with protein, DNA, RNA and water elements. This file
might be of particular interest if you want to make sure that systems created the “new” way (with the leaprc
files outlined above) are consistent with those using the older, “combined” method.

3.1. Proteins

In addition to the recommended file, leaprc.protein.ff14SB, there are a variety of alternatives for proteins; these
are described in the following sections.

3.1.1. The SB family of protein forcefields (ff19SB, ff14SB, and ff99SB)

leaprc.protein.f£f19SB
leaprc.protein.ff14SB

leaprc.protein.ff14SBonly This is the same as leaprc.protein.ff14SB, but will additionally load:
frcmod. ££99SB14 ££99SB backbone parameters with £f14SB atom types

ff19SB

JFI9SB [19] is the latest model of the SB protein forcefields, developed in the Simmerling Lab at Stony Brook
University. The new ff19SB forcefield has shown to improve amino acid-dependent properties such as helical
propensities and reproduces the differences in amino-acid-specific PDB Ramachandran map. Users are encouraged
to read the ff19SB article [19] to learn more about the motivation behind ff19SB, as well as details of the fitting and
testing protocols and improved performance relative to ff14SB. Our older SB protein forcefield models utilized
uncoupled phi/psi dihedral parameters for the protein backbone, and every amino acid except for glycine used
the backbone dihedral parameters fit using alanine. In ff19SB, we improved the backbone dihedrals parameters
for every standard amino acids. We fit coupled ¢/{ parameters using 2D ¢/{) conformational scans for multiple
amino acids, using 2D QM energy surfaces in solution as reference data. These new dihedral parameters include
amino-acid specific CMAPs that are based on residue name. We also zeroed the amplitudes of the old backbone
phi/psi dihedral parameters (in atom name, C-N-CA-C, N-CA-C-N, C-N-CA-CB, CB-CA-C-N, HA-CA-C-0O)
from ff14SB that are based on the atom types. It is important that ff19SB be combined only with a parameter set
that has no cosine terms for these dihedrals.

Our results [19]showed that ff19SB pairs best with the more accurate water model OPC [20] , and that the older
TIP3P model has serious limitations when used with the QM-based ff19SB. As a result, we strongly recommend
using ff19SB with OPC, and we recommend against use with TIP3P.

In order to separate the new ff19SB parameters from the original ff14SB parameters, a new atom type XC was
created for C-alpha for all non-terminal residues. All the bonds, angles, non-bonded parameters (except S, see
below), and dihedral parameters not involving C-alpha were retained from ff14SB. The old backbone dihedral
parameters for C-alpha were modified to use atom type XC for C-alpha (instead of the old CX), and the amplitudes
were set to zero since it will use CMAP instead.

How to use ff19SB:

36



3.1. Proteins

To use ff19SB users can execute the following command in tleap:
source leaprc.protein.ff19SB
This will load the following files:

1. parml19.dat is similar to parm10.dat. It has the new atom type XC parameters, which are identical to CX
parameters, except for the dihedral H1-CX-C-O parameters.

2. fremod.ff19SB contains the parameters from fremod.ff14SB, where the CX atom type was replaced with
the XC atom types. The dihedral H1-CX-C-O was copied over from parm10.dat. CX is also replaced
with XC for this dihedral. The magnitude of the backbone dihedrals with XC is zeroed. This is done
since the residue-based CMAP is used instead to calculate the backbone dihedral energies. The Lennard-
Jones parameters for S, SH were both obtained from atom type “s” (sulfur with one connected atom) from
gaff2.dat, while Lennard-Jones parameters for HS were obtained from atom type “hs” (hydrogen-bonded to
sulphur) in gaff2.dat. The CMAP parameters were updated for all non-terminal versions of the 20 standard
amino acids, as well as alternate protonation states for these residues.

3. amino19.lib All parameters from aminol2.lib were copied over. Then, CX (alpha carbon atom type in
ff14SB) was replaced with XC for the entire file. None of the amino acids here should use atom type CX for
the alpha carbon.

4. aminont12.lib and aminoct12.lib is the same file as used for ff14SB, and is not changed in ff19SB. ff19SB
CMAP parameters are not applied to terminal amino acids since they do not have both phi and psi. Instead,
ff14SB is applied using parameters contained in aminont12.lib for N-terminal amino acids and aminoct12.1ib
for the C-terminal amino acids.

Instructions for implementing ff19SB for a new amino acid (residue)

The situation often arises when a user may want to modify parameters for a standard amino acid or may want
to create a new parameters set for a modified amino acid. If the user wants to implement ff19SB on their new
amino acid, they should be cautious about the C-alpha atom type. In ff14SB, CX is used for the C-alpha atom
type, and hence all the ff14SB backbone parameters specify the CX atom type. In ff19SB, CX is replaced by
XC, and hence all the ff19SB backbone parameters specify the XC atom type. Additionally, the ff19SB backbone
dihedral parameters are zeroed, since CMAPS are used to define the energy of phi and psi. Importantly, if the
CX atom type is used, then ff14SB backbone dihedral parameters will be applied to all residues that use the CX
atom type, and if the XC atom type is used, then all backbone dihedral parameters will be zeroed. Care must be
taken not to mix these two protocols. When implementing ff19SB for a new amino acid, the user has the option to
build their topology file via tleap using pure ff19SB including a generic CMAP for the new residue, or a mixture
of ff14SB/ff19SB using ff19SB for everything except the new residue. Therefore we urge the user to follow the
procedure described in one of the scenarios below.

Scenario 1: In order to apply ff14SB parameters to a non-standard amino acid or a specific standard amino acid
and apply ff19SB to every other amino acid in the protein, please follow these steps:

source leaprc.protein.ff19SB
loadoff user-defined-file.lib
loadamberparams user—-defined-file.frcmod

The user-defined library and frcmod files for the new residue must use the CX atom type for C-alpha. Since the
ff19SB CMAP is applied based on residue name, it is important that new residue using CX for C-alpha does not
match the existing residue names for the standard amino acids, or else the CMAP will be applied in addition to the
ff14SB backbone parameters, giving incorrect results.

Scenario 2: In order to apply ff19SB parameters to a non-standard amino acid or a specific standard amino acid
and also apply ff19SB to every other amino acid in the protein, please follow these steps:
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source leaprc.protein.ff19SB

loadoff user-defined-file.lib
loadamberparams user—defined-file.frcmod
loadamberparams frcmod.f£f19SB_XXX

The user-defined library file and fremod files for the new residue must use the XC atom type for C-alpha. Ensure
the amplitudes of the phi/psi dihedrals are zeroed since you will be applying a CMAP for phi/psi. To apply a
CMAP for the phi/psi dihedral of the modified amino acid, the user must modify the provided file
fremod.ff19SB_XXX by replacing XXX in the CMAP_TITLE and CMAP_RESLIST shown below, with the new
residue name matching that defined in the user-defined library file. frcmod.ff19SB_XXX can be found in
$AMBERHOME/dat/leap/parm/ directory.

$FLAG CMAP_TITLE
XXX CMAP

%$FLAG CMAP_RESLIST 1
XXX

fremod.ff19SB_XXX will apply the LEU CMAP backbone parameters which we recommend as a generic model
for modified amino acids. Next, the user can load the new frcmod.ff19SB_XXX.

ff14SB

Jf14SB [21] was a continuing evolution of the earlier ff99SB force field.[22] Several groups had noticed that the
older ff94 and ff99 parameter sets did not provide a good energy balance between helical and extended regions of
peptide and protein backbones. Another problem is that many of the ff94 variants had incorrect treatment of glycine
backbone parameters. ff99SB improved this behavior, presenting a careful reparametrization of the backbone
torsion terms in ff99 and achieves much better balance of four basic secondary structure elements (PP II, 8, o,
and og). Briefly, dihedral term parameters were obtained through fitting the energies of multiple conformations
of glycine and alanine tetrapeptides to high-level ab initio QM calculations. We have shown that this force field
provides much improved proportions of helical versus extended structures. In addition, it corrected the glycine
sampling and should also perform well for B-turn structures, two things which were especially problematic with
most previous Amber force field variants. The changes mainly involve torsional parameters for the backbone and
side chains. For backbones, experimental scalar coupling data for small solvated peptides became available [23]
against which ff99SB was compared.[24] As ff99SB backbone dihedrals were fit based on gas-phase quantum data,
we felt that slight empirical adjustments were worth pursuing. This was done to improve agreement with scalar
coupling data, and we observed that this also improved stabilities of helical peptides.

ff14SBonlysc

[f14SBonlysc, where sc stands for side chains, includes ff99SB backbone parameters with updated side chain
parameters that were derived from ab initio quantum mechanics calculations (as were the ff99SB backbone cor-
rections). This model is slightly different from ff/4SB, which includes the ffi4SBonlysc parameters as well as a
small empirical correction to backbone parameters that was designed to improve agreement between NMR data
and simulations in TIP3P water for short peptides. We are currently exploring whether this empirical correction
also improves simulations in other water models, such as the GBneck2 (igb=8) model. [25] Currently, it appears
that igh=8 may work best with the fully quantum mechanics-based dihedral parameters included in ff14SBonlysc.
Simulations performed in explicit water most likely benefit from the empirical corrections included in ffI4SB or
Jf19SB..

3.1.2. The ff15ipq protein force field

leaprc.protein.f££f15ipg This will load the files listed below
parml5ipg 10.3.dat force field parameters
aminol5ipqg 10.0.1lib topologies and charges for amino acids
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aminontl5_ipql0.0.1lib same, for N-terminal amino acids
aminoctl5ipg 10.0.1lib same, for C-terminal amino acids

[f15ipq [26] continues the development begun with the ff14ipqg force field [27, 28], but offers new, we hope
better, parameter choices, data fitting, and validation. The physical assumptions behind the model are the same,
but problems with ffI4ipg, most generally the "stickiness" of polar groups in simulations, led to sweeping pa-
rameter changes. The pair-specific Lennard-Jones terms in ff/4ipq were the problem, introducing an imbalance
of protein:water and protein:protein interactions. They have been replaced by modified polar hydrogen radii and
a consistent Lorentz-Berthlot combining rule as found in other Amber force fields. As a consequence, the entire
charge set has changed, albeit slightly, and the the torsion parameters have been expanded and rederived. To further
improve the internal potential energy surface, refitted angle parameters are included for the protein backbone. The
new version comprises nearly 1,200 unique parameters, and ff14ipq is archived (use o1dff/leaprc.ffl4ipq) for
backwards compatibility and comparisons.

The extended IPolQ charge derivation anticipates a workflow in which the final model must have charges roughly
consistent with the polarization molecules experience in water, but also new torsion parameters which are often
derived with quantum calculations of the system in vacuum. In the extended methodology, two sets of charges
are fitted: one for the systems in vacuum, the other for systems in the condensed phase. The original IPolQ
method [27] derives the appropriate condensed phase charges by fitting to the average electrostatic potential of
polarized and unpolarized molecules, a process that harkens to linear response theory and implicitly accounts for
the energetic cost of polarizing the system away from is gas phase equilibrium. The extended scheme draws on
the vacuum phase electrostatic data a second time to make an alternative set of charges appropriate to describe the
vacuum potential energy surface—the IPolQ charges themselves are, in fact, re-expressed as a perturbation of this
gas phase charge set. Both sets of charges are derived in the same linear least squares fitting problem, with restraint
equations weakly coupling the corresponding charges together. This creates charge sets for each phase related by
a minimal perturbation, which can be assumed to be the effective, average polarization of the molecules when
they enter solution. The charge set appropriate to the vacuum phase is then used when fitting torsion potentials
to vacuum phase quantum mechanical energies, and the torsion potentials are transferred directly for use with the
condensed-phase charge set in actual simulations, following the earlier assumption that the effective polarization
of the molecules, and thereby any energetic consequences of entering the condensed phase, are captured in the
charge perturbation.

All parameter optimization in ff15ipq, like its predecessor ffI4ipq, is iterative: a generational learning scheme
whereby the results of previous simulations and force field manipulations are submitted to quantum single point
energy calculations and then added to the training data. As with ffl4ipq, charges and gas-phase conformational
energies are all taken at the MP2/cc-pVTZ level; ff15ipq takes the ff14ipq conformational energies as its starting
point and expands the space nearly four-fold. We find that this crude form of machine learning is a good substitute
for human intervention. As with ffl4ipq, the iterative process led to an evolution in simulation performance over
a variety of systems. We utilized these benchmarks to determine when the parameter set was ready for general
release.

The new ff15ipq model [26] was derived with the SPC/E-b water model of Takemura and Kitao [29]. Returning
to three-point water models improves performance of most Amber protein simulations on GPUs by about 30% due
to the reduction in the overall number of particles; a smaller improvement can be seen on CPUs. While SPC/E-b
is the recommended water model, the solvent reaction field potential observed in our IPolQ studies is consistent
across three- and even some four-point waters: combinations of ffI5ipg with TIP3P, the original SPC/E, and other
water models are reasonable to try. One issue that may arise in some circumstances is the compatibility of the water
model with ion parameters: we have set ff15ipq to reference ion parameters appropriate for the nearest water model
available, SPC/E. However, for highly charged or dense ionic solutions this combination may be sub-optimal. With
respect to compatibility with other macromolecular force fields such as sugars, lipids, or nucleic acids, we note
that while the charge set is novel, the MP2/cc-pVTZ solution-phase [PolQ charges [27] are in fact quite similar to
the Cornell charges derived at the HF/6-31G* level [30]. This result may support the long lifespan of that charge
set, and makes it likely that ff15ipg will be compatible with other force fields designed at the common HF/6-31G*
level.

[ff15ipq has been validated on a larger number of test systems than its predecessor, and for much longer timescales.
Multiple alpha-helical and beta-sheet peptides have been tested at a variety of temperatures, and numerous small
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proteins (the largest including lysozyme and the p5S3/MDM2 complex) have been simulated for timescales ranging
from 4 to 10 microseconds, displaying excellent stability and also instability in cases where loops of the proteins
or isolated peptides are known to be disordered. Various teething problems in the ff14ipq force field were solved
by improvements to the data set or the fitting protocol itself, so we are increasingly confident that ff15ipqg and
future products of the IPolQ workflow will be reliable straight out of the automated parameter development phase.
The entire data set and mdgx input file for deriving the torsion and angle parameters of ff15ipq will be released as
supporting information in the upcoming publication on the force field. In the future we hope to build on the lineage
of ff-ipq protein models to include other important areas of biological chemistry.

3.1.3. The fb15 (“force balance”) protein force field

leaprc.protein. fbl5 This will load the files listed below
frcmod. £b15 force field parameters

frcmod. tip3pfb parameters for the force balance 3-point model
all_aminofbl5.1lib topologies and charges for amino acids

all aminontfbl5.lib same, for N-terminal amino acids
all_aminoctfbl5.1lib same, for C-terminal amino acids

The files can be used for protein-water simulations using the “force-balance” approach described in Ref. [31, 32].
There is also a 4-point water model available, as described in section 3.5. For alkali and halide ions, the Joung-
Cheatham parameters for TIP3P (or TIPAPEW) are recommended; see Section 3.6.

3.1.4. The Duan et al. (2003) force field

leaprc.protein.£f£f03.rl loads the following files:

frcmod. ££03 For proteins: changes to parm99.dat, primarily in the
phi and psi torsions.

all_amino03.in Charges and atom types for proteins

all_aminont03.in For N-terminal amino acids

all _aminoct03.in For C-terminal amino acids

The ff03 force field [33, 34] is a modified version of ff99 (described below). The main changes are that charges
are now derived from quantum calculations that use a continuum dielectric to mimic solvent polarization, and that
the ¢ and y backbone torsions for proteins are modified, with the effect of decreasing the preference for helical
configurations. The changes are just for proteins; nucleic acid parameters are the same as in ff99.

The original model used the old (ff94) charge scheme for N- and C-terminal amino acids. This was what was
distributed with Amber 9, and can still be activated by using oldff/leaprc.ff03. More recently, new libraries for the
terminal amino acids have been constructed, using the same charge scheme as for the rest of the force field. This
newer version (which is recommended for all new simulations) is accessed by using leaprc.protein.ffO3.r1.

3.1.5. The Yang et al. (2003) united-atom force field

frcmod. ££03ua For proteins: changes to parm99.dat, primarily in the
introduction of new united-atom carbon types and new

side chain torsions.

uni_amino03.in Amino acid input for building database
uni_aminont03.in NH3+ amino acid input for building database.
uni_aminoct03.in COO- amino acid input for building database.

The ff03ua force field [35] is the united-atom counterpart of ff03. This force field uses the same charging scheme
as ff03. In this force field, the aliphatic hydrogen atoms on all amino acid side-chains are united to their corre-
sponding carbon atoms. The aliphatic hydrogen atoms on all alpha carbon atoms are still represented explicitly to
minimize the impact of the united-atom approximation on protein backbone conformations. In addition, aromatic
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hydrogens are also explicitly represented. Van der Waals parameters of the united carbon atoms are refitted based
on solvation free energy calculations. Due to the use of an all-atom protein backbone, the ¢ and y backbone
torsions from ff03 are left unchanged. The sidechain torsions involving united carbon atoms are all refitted. In this
parameter set, nucleic acid parameters are still in all atom and kept the same as in ff99.

3.1.6. Options for intrinsically disordered proteins.

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are proteins or parts (regions)
of protein that lack stable secondary and tertiary structures under specific physiological conditions[36]. Compared
to globular proteins in their native states, atomistic modeling of IDPs and IDRs is inherently more demanding:
these structures are represented by multiple inter-converting conformations, often within kg7 of each other. Thus,
while a simulation that focuses on the unique native state of a globular protein may be robust to errors in the force-
field that over-stabilize the native state, the same errors of just 1 or 2kp7T may lead to a completely wrong relative
abundance of conformations representing the IDP. Long time-scale simulations have demonstrated[37] that several
popular water models, in combination with any of several widely accepted force-fields, lead to overly compact
IDP conformations. Efforts to improve force fields and water models for IDPs are on-going[37—41]; recently, OPC
water model in combination with the ff99SB was found to improve, significantly, accuracy of atomistic simulations
of IDPs[42].

3.2. Nucleic acids

As with proteins, many features of the current force fields, including partial atomic charges, Lennard-Jones
parameters, and most bond and angle terms, date back to force fields developed in the 1990’s, and overviews of
this work are available.[43, 44] The next breakthroughs in the Amber nucleic acid force field development came
from observations from relatively longer simulations on the 50-100 ns time scale in the early 2000’s.[45, 46] These
simulations found systematic over-population of y = trans backbone geometries in nucleic acids. High level QM
calculations were performed on models of sugars and phosphates, specifically a sugar-phosphate model[47] and
a sugar-phosphate-sugar model,[48] which ultimately led to the ff99-bscO parameterization.[47] For simulation
of canonical DNA and RNA structures, the ff99-bscO parameterization has proven rather successful. For non-
canonical structures, particularly those with loops or bulges, or ¥ flips, some anomalies have been noted.

3.2.1. RNA
] Desired Behavior Source these files | Notes \
RNA
f990L3 leaprc.RNA.OL3 parmbsc0 o/y [47] + YOL3 [49] to ff99
[990L3 + backbone phosphate leaprc.RNA.LJbb [990L3 + backbone phosphate modifications[50]
ff99y + bsc0 leaprc. RNA.YIL parmbscO o/y [47]+ Yildirim [51]y mods to ff99.
ff99bscO oldff/leaprc.ff99bscO Contains parmbsc0 o/y mods[47] to ff99.
“Rochester” torsions leaprc.RNA.ROC [52]
“DE Shaw” modifications leaprc.RNA.Shaw [53]
Modified nucleotides leaprc.modrna08 parameters for modified nucleosides [54]

Table 3.1.: How to specify RNA force fields in LEaP; recommended variants are in italics.

With RNA, incorrect loop geometries, backbone sub-state populations and sugar pucker populations were ob-
served in longer simulations. In addition to not being able to always maintain south puckers where found in RNA
structures, multiple groups noticed a tendency for the RNA backbone to shift, putting ) into the high-anti region
which leads to an opening of the duplex structure into a ladder-like configuration. Again, QM methods at various
levels were employed to improve the y distribution using relevant model systems. The most tested ¥ modifications
are the “OL” modifications used in ff14SB.[49, 55] On top of the OL modifications, Bergonzo & Cheatham found
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that with modified phosphate parameters from Steinbrecher et al.[S0] and an improved water model (OPC), better
agreement with NMR data for RNA tetranucleotide populations was observed.[56] In this parameter set, a new
atom type for O4’ was created named OR (previously type OS). This allowed modification of O2 and OS atom
types to LJ=1.7493, 0.2100 and 1.7718, 0.1700; previous values = 1.6612, 0.2100 and 1.6837, 0.1700.

An alternative available with Amber is the Yildirim ¥ modifications (and also related modifications called TOR
which alter £/§ as well)[51, 57, 58], and a systematic assessment and validation of these newer ) modifications
is underway on a large series of RNA tetraloop structures. Note that small changes to a particular dihedral may
lead to alteration in properties of related dihedrals, and may have unintended consequences. For example, the
[99-bscO modifications tend to lock RNA sugar puckers mainly in the north, even with nucleotides in particular
sequence contexts that prefer southern conformations. Moreover, the ¥ modifications tend to further destabilize y
= trans. This suggests that to reliably improve the nucleic acid dihedrals, a more systematic approach across many
dihedrals with simultaneous fitting may be more appropriate. Moreover, we no longer fully support the idea that
parameters are transferable between DNA and RNA, or between purines and pyrimidines. For example, the ff99-
OL modifications (with or without ff99-bsc0) improve the modeling of RNA, but lead to issues with DNA, most
notably with quadruplex structures. Therefore recent work has focused on separate y modifications for DNA.[59]

An alternative set of torsions for RNA, fit to quantum calculations has recently been reported by the Rochester
group,[52] and can be loaded with the 1eaprc.RNA.ROC file. More extensive modifications are contained in the
“DE Shaw” force field,[53], which can be loaded with leaprc.RNA.Shaw.

3.2.2. DNA
’ Name \ Modification Notes
ffo4 Original force field file Obsolete
98 Modified charge set Obsolete
ff99 Updated charge set Foundation for all current ff’s
bscO Barcelona /7y backbone modification [47]
e/C OL1 €/¢ modification for DNA improvement for DNA, no effects for RNA [60]

x OL4 x modification tuned for DNA [59]

B OL1 B dihedral modification tuned for DNA | improvement for DNA, no effects for RNA[61]
OLI5 (e/COLI+)OLA+BOLI) [62]
bscl Major update to bscO [63]

Table 3.2.: Force field name and modifications for simulating nucleic DNA. Recommended variants are listed in
italics.

As noted in Table 3.2, most current DNA force fields are based on parameters and charges that go back to
Amber’s ff99. A new set of parameters for the £/ dihedral[60] and for the 8 dihedral[61] torsion for DNA have
been developed using QM methods that include the solvation effects implicitly. This set of parameters have been
tested with several double-stranded DNA systems including the Dickerson-Drew dodecamer, A-tracs, CG-rich
duplexes, Z-DNA and G-quadruplexes. These modifications increase the population of BII substate by stabilizing
the €/ = g-/t state and renders higher values for the helical twist in the tested systems. In combination with the y
modification for DNA (yOLA4, [59]), the force field generates structures that suggest a better agreement with NMR
data. The reader should pay careful attention to the use of the ¥ modifications, since the naming convention of the
authors is the same for RNA and DNA.

The combination of the three dihedral updates (¢/{OL1+xOL4+BO0L1) are now termed OL15 [62], which are
available sourcing the file leaprc.nucleic.OL15. More details about the OL15 force field development and test
cases is available in http://fch.upol.cz/ff_ol/.

In a parallel effort, the group at the Barcelona Supercomputing Center have updated the well-known bscO mod-
ification, now termed bscl.[63] This updated version of the bscO modification has also been developed using
implicit solvation model and rigorous QM methodology. As with the OL15 variant, the updated bscl force field
increases the helical twist and yields double stranded DNA structures that are in better agreement with experimen-
tal structures. Testing of the bscl force field has been performed using more than 130 systems, including single
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and double stranded DNA, hairpin structures, DNA-protein complexes, G-quadruplexes and more. This can be
accessed by sourcing leaprc.nuclic.bscl; additional information about the bscl force field development and test
cases is available in http://mmb.irbbarcelona.org/ParmBSC1l/

Details of the different modifications available for DNA are presented in Table 3.2. Regarding the performance
of OL15 and bscl for DNA, preliminary testing comparing both force fields strongly suggest that both variations
perform in a similar way and are improvements over the previous commonly bscO modification.[62] We refer the
reader to the original articles of each force field to better understand the details and performance between each
variant.

3.2.3. Some nonstandard situations

Nucleic acid residues use the new (version 3) PDB nomenclature: “DC” is used for deoxy-cytosine, and “C”
for cytosine in RNA, etc. Earlier force fields (which are not recommended!) use “RC” for the RNA version. If
you want a single, nucleoside, use “CN”, etc. For a single nucleotide, use the following command in LEaP:

cnuc = sequence { OHE C3 }

and analogs for other bases. Note that this will construct a protonated 5 phosphate group, which may not be what
you want.

Some RNA molecules may have a 5’ residue with an attached phosphate group. This requires a bit-of
hand-editing of your PDB file. Suppose your 5’ end looks like this (taken from PDB code 2DXI):

ATOM 1 oP3 G C 501 19.050 87.190 73.029 1.00 73.49 (0]
ATOM 2 P G C 501 18.499 87.676 71.706 1.00 75.79 P
ATOM 3 oPl G C 501 16.984 87.888 71.715 1.00 73.44 (o)
ATOM 4 OP2 G C 501 18.979 86.828 70.515 1.00 77.51 (0]
ATOM 5 05’ G C 501 19.153 89.150 71.502 1.00 63.81 (0]
ATOM 6 C5’ G C 501 18.729 90.260 72.301 1.00 48.63 C
You need to edit the first atom, changing its residue name to OHE:
ATOM 1 OP3 OHE C 500 19.050 87.190 73.029 1.00 73.49 (o)
ATOM 2 P G C 501 18.499 87.676 71.706 1.00 75.79 P
ATOM 3 oOoPl G C 501 16.984 87.888 71.715 1.00 73.44 (o)
ATOM 4 OP2 G C 501 18.979 86.828 70.515 1.00 77.51 (0]
ATOM 5 05’ G C 501 19.153 89.150 71.502 1.00 63.81 (0]
ATOM 6 C5’ G C 501 18.729 90.260 72.301 1.00 48.63 C

Note that this is not necessarily optimal: the 5’ terminal phosphate will have the same charges as the phosphate in
a phosphodiester linkage between residues along the chain. If the properties of the 5’ terminal group are especially
important to you, you may need to construct a special residue here. Also note (as noted above), this constructs a
protonated terminal phosphate (net charge of -1); again you will need to construct special residues it you wish to
have a deprotonated phosphate at the 5° position.

3.3. Carbohydrates

GLYCAMOG is a consistent and transferable parameter set for modeling carbohydrates,[64] and glycoconjugates.[65,
66] The core philosophy of the force field development process is that parameters should be: (1) be transferable
to all carbohydrate ring formations and sizes, (2) be self-contained and therefore readily transferable to many
quadratic force fields, (3) not require specific atom types for o- and $-anomers, (4) be readily extendible to carbo-
hydrate derivatives and other biomolecules, (5) be applicable to monosaccharides and complex oligosaccharides,
and (6) be rigorously assessed in terms of the relative accuracy of its component terms.

When combining GLYCAMO06 with AMBER parameters for other biomolecules, parameter orthogonality is
ensured by assigning unique atom types for GLYCAM. In order to facilitate combining GLYCAMO6 with other
AMBER parameter sets for other biomolecules, a variation on the GLYCAM atom types has been introduced in

43


http://mmb.irbbarcelona.org/ParmBSC1/

3. Molecular mechanics force fields

which the new name consists of an uppercase letter followed by second character, either a number or lowercase
letter. For example the GLYCAM "CG" atom type has been changed to "Cg"; "HO" is now represented as "Ho",
and so forth.

As soon as new parameters are generated, or alterations are made to existing parameters, a new version of
GLYCAM is released. Updated versions that introduce new functionality are denoted using a letter suffix (i.e.
GLYCAMO6a, 06b, etc.). Each release is accompanied with an associated text file that summarizes the new
functionality or alteration. For example, a particularly important update, released in GLYCAMOG6e, altered the
endo-anomeric torsion term (Cg-Os-Cg-Os) in order to more accurately reproduce the populations arising from
ring flips (*C; to !Cy4 etc.). This particular case suggested the need to be able to independently characterize the
exo- and endo-anomeric effect, which was achieved by assigning different atom types (Oa and Oe) to represent the
endo-anomeric and exo-anomeric oxygen atoms, respectively.

In another important update (GLYCAMO06g), a small van der Waals term was applied to all hydroxyl hydrogen
atoms (Ho) to address a rare, but catastrophic, situation that can arise during MD simulations. In certain carbohy-
drate (and potentially other) configurations, a hydroxyl proton may be structurally constrained to being very close
to a carboxylate moiety. During an MD simulation of such a system, an oscillatory motion can begin between the
hydroxyl proton and the negative charge site, leading ultimately to failure of the simulation as the proton collapses
onto the negatively charged moiety. The small van der Waals term (Ho, R* = 0.2000 A, & = 0.0300 kcal/mol)
is just large enough to add sufficient repulsion to prevent this behavior, while not being large enough to perturb
properties such as hydrogen bond lengths.

The GLYCAM force field family, especially, GLYCAMO6, has been extensively employed in simulations of
biomolecules by the larger scientific community.[67-70] The updated GLYCAM parameters and documentation
are available for download at the GLYCAM-Web site (www.glycam.org). Also available on the website are tools
for simplifying the generation of structure and topology files for performing simulations of oligosaccharides,
glycoconjugates and glycoproteins. GLYCAM-Web has been integrated into several glycomics databases, such as
the Consortium for Functional Glycomics (www.functionalglycomics.org).

GLYCAMO6 force field
Always check glycam.org/params for more recent versions and new functionalities.

leaprc.GLYCAM 063j-1 LEaP configuration file for use of GLYCAMO06

with carbohydrates alone or in combination

with the ff14SB force field.
GLYCAM 063j.dat Parameters for oligosaccharides
GLYCAM 06j-1.prep Structures and charges for glycosyl residues
GLYCAM_lipids_06h.prep Structures and charges for some lipid residues
GLYCAM amino_063j_12SB.lib Glycoprotein libraries compatible with £f14SB.
GLYCAM aminoct_063j_12SB.lib
GLYCAM_aminont_06j_12SB.1lib

GLYCAMOGEP force field using lone pairs (extra points)

GLYCAM_06EPb.dat Parameters for oligosaccharides
GLYCAM_O06EPb.prep Structures and charges for glycosyl residues
leaprc.GLYCAM 06EPb LEaP configuration file for GLYCAM-06EP

GLYCAM Force Field Parameters Download Page
http://www.glycam.org/params

GLYCAM_06j-1.prep contains prep entries for all carbohydrate residues and GLYCAM_lipids_06h.prep contains
prep entries for some lipid residues (although for lipid membrane simulations we recommend you use the Amber
Lipid 17 force field). GLYCAM_O6EPb.prep contains prep entries for all carbohydrate residues available for
modeling with extra points.

For linking glycans to proteins, libraries containing modified amino acid residues (Ser, Thr, Hyp, and Asn) must
be loaded. To build a glycoprotein using {ff14SB, GLYCAM_amino_06j_12SB.lib GLYCAM_aminont_06j_12SB.lib
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Version | Release Date Contributors \ Change Summary \

Modified all parameters to be compatible with ff14SB.

j 15 Feb., 2014 BLF These files may not be compatible with older protein and
nucleic acid force fields.

i 27 Aug., 2013 AKN Added two new monosaccharides to the prep file.
*Changed atom type naming to be orthogonal to other

h 20 Oct., 2010 MBT, BLF force ﬁelds. Added HO van der Waals parameters. Set
protein-related parameter values to their parm99
counterparts. Updated N-sulfation parameters.
* 1,4-scaling terms added to parameter file. Angle and

g 20 Oct., 2010 MBT torsion updates for pyranose rings, N-sulfate, phosphate
and sialic acid.

f 3 Feb., 2009 MBT * Corrected a typo in O-Acetyl term

R 28 May, 2008 MBT Upda'ted 'gly0031d1c linkage terms to optimize ring
puckering in pyranoses

d 12 May, 2008 | SPK, MBT, ABY | Terms for thiol glycosidic linkages

c 21 Feb., 2008 MBT, ABY ~Addlt‘10nal (published) terms for some lipid
simulations[71]

b 10 Jan., 2008 MBT, ABY 1'\11'<an'es, alkgnes, amide and amino groups for some
lipid simulations[71]

a 24 Apr., 2005 ABY Sulfates & phosphates for carbohydrates

Table 3.3.: Version change summary for the GLYCAM-06 force field. *Previously released parameters were
changed. See full release notes at glycam.org/params. SPK: Sameer P. Kawatkar. MBT: Matthew
B. Tessier. ABY: Austin B. Yongye. BLF: B. Lachele Foley. AKN: Anita K. Nivedha

and GLYCAM_aminoct_06j_12SB.1ib must be loaded and the desired protein force field must also be loaded.
Amino acid libraries designed for linking carbohydrates modeled with extra points are not currently available.

3.3.1. File versioning

Beginning on 15 September, 2011, a new versioning system was implemented for Glycam parameters. Files
produced before that date will not necessarily conform to the new system. In the new system, all files containing
parameters are versioned. Users should check their contents and replace them with recent versions as appropriate.

The new versioning system employs letters and numbers. If a parameter set contains new functionality (e.g.,
the addition of new parameters) or fundamental changes (e.g., atom type name reassignments), a letter will be
appended to its name. If the new version contains corrections (e.g., for typographical errors), its name will be
appended with a number. See glycam.org/params for more documentation and examples.

Researchers are also encouraged to read the version change documentation available on the GLYCAM Parame-
ters download page under "Documents." In this document, the changes specific to each version release are detailed.
The changes are also summarized here in Table 3.3.

3.3.2. Atom type name changes

Beginning with versions g, Glycam atom type names will adopt a standard designed to keep them from over-
lapping with other force fields. In most cases, Glycam’s type names will consist of two characters, one upper-case
followed by one lower-case. Because of this, leaprc files, lib files and prep files from versions prior to g will be
incompatible with current versions.

Note that some type names will not reflect the new Glycam type standard, despite being present in the Glycam
force field files, for example in the files for linking glycans to amino acid residues. In these cases, Glycam will use
the type name appropriate to the external force field. Parameters will be introduced only to the extent necessary

45
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to provide a link between the force fields. Since the associated parameters will also include Glycam types, they
should only affect the intersections between the two force fields.

Beginning with versions j, atom type names for linking to amino acids are compatible with ff14SB. Older
versions of protein and nucleic acid force fields might not be compatible.

3.3.3. General information regarding parameter development

In GLYCAM-06,[64] the torsion terms have now been entirely developed by fitting to quantum mechanical
data (B3LYP/6-31++G(2d,2p)//HF/6-31G(d)) for small-molecules. This has converted GLYCAM-06 into an addi-
tive force field that is extensible to diverse molecular classes including, for example, lipids and glycolipids. The
parameters are self-contained, such that it is not necessary to load any AMBER parameter files when modeling
carbohydrates or lipids. To maintain orthogonality with AMBER parameters for proteins, notably those involving
the CT atom type, tetrahedral carbon atoms in GLYCAM are called Cg (C-GLYCAM, CG in previous releases).
Thus, GLYCAM and AMBER may be combined for modeling carbohydrate-protein complexes and glycoproteins.
More information on atom type names is available in 3.3.2 . Because the GLYCAM-06 torsion terms were de-
rived by fitting to data for small, often highly symmetric molecules, asymmetric phase shifts were not required
in the parameters. This has the significant advantage that it allows one set of torsion terms to be used for both
a- and f-carbohydrate anomers regardless of monosaccharide ring size or conformation. A molecular develop-
ment suite of more than 75 molecules was employed, with a test suite that included carbohydrates and numerous
smaller molecular fragments. The GLYCAM-06 force field has been validated against quantum mechanical and
experimental properties, including: gas-phase conformational energies, hydrogen bond energies, and vibrational
frequencies; solution-phase rotamer populations (from NMR data); and solid-phase vibrational frequencies and
crystallographic unit cell dimensions.

3.3.4. Scaling of electrostatic and nonbonded interactions

As in previous versions of GLYCAM,[2] the parameters were derived for use without scaling 1-4 non-bonded
and electrostatic interactions. Thus, in sander, pmemd, and so on, the simulation parameters scnb and scee should
typically be set to unity. We have shown that this is essential in order to properly treat internal hydrogen bonds,
particularly those associated with the hydroxymethyl group, and to correctly reproduce the rotamer populations
for the C5-C6 bond.[72] Beginning with Amber 11, it is now possible to employ mixed scaling of the scnb and
scee parameters. Anyone wishing to simulate systems containing both carbohydrates and proteins should use the
new mixed scaling capability. To do this, any scaling factors that differ from the default must be included in the
parameter file. Beginning with the GLYCAM_06g parameter file shipped with Amber 11, these factors are already
included. Anyone wishing to employ earlier parameter sets must modify the files.

3.3.5. Development of partial atomic charges

As in previous versions of GLYCAM, the atomic partial charges were determined using the RESP formalism,
with a weighting factor of 0.01,[64, 73] from a wavefunction computed at the HF/6-31G(d) level. To reduce
artifactual fluctuations in the charges on aliphatic hydrogen atoms, and on the adjacent saturated carbon atoms,
charges on aliphatic hydrogens (types HC, H1, H2, and H3) were set to zero while the partial charges were fit
to the remaining atoms.[74] It should be noted that aliphatic hydrogen atoms typically carry partial charges that
fluctuate around zero when they are included in the RESP fitting, particularly when averaged over conformational
ensembles.[64, 75] In order to account for the effects of charge variation associated with exocyclic bond rotation,
particularly associated with hydroxyl and hydroxylmethyl groups, partial atomic charges for each sugar were
determined by averaging RESP charges obtained from 100 conformations selected evenly from 10-50 ns solvated
MD simulations of the methyl glycoside of each monosaccharide, thus yielding an ensemble averaged charge
set.[64, 75]

46



3.3. Carbohydrates

Carbohydrate Pyranose | Furanose
o/B,p/L | /B, D/L
Arabinose yes yes
Lyxose yes yes
Ribose yes yes
Xylose yes yes
Allose yes
Altrose yes
Galactose yes a
Glucose yes a
Gulose yes
Idose a
Mannose yes
Talose yes
Fructose yes yes
Psicose yes yes
Sorbose yes yes
Tagatose yes yes
Fucose yes
Quinovose yes
Rhamnose yes
Galacturonic Acid yes
Glucuronic Acid yes
Iduronic Acid yes
N-Acetylgalactosamine yes
N-Acetylglucosamine yes
N-Acetylmannosamine yes
Neu5Ac yes, b yes,b
KDN a,b a,b
KDO a,b a,b

Table 3.4.: Current Status of Monosaccharide Availability in GLYCAM. (a) Currently under development. (b) Only
one enantiomer and ring form known.
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3.3.6. Carbohydrate parameters for use with the TIP5P water model

In order to extend GLYCAM to simulations employing the TIP-5P water model, an additional set of carbohydrate
parameters, GLYCAM-06EP, has been derived in which lone pairs (or extra points, EPs) have been incorporated
on the oxygen atoms.[76] The optimal O-EP distance was located by obtaining the best fit to the HF/6-31g(d)
electrostatic potential. In general, the best fit to the quantum potential coincided with a negligible charge on the
oxygen nuclear position. The optimal O-EP distance for an sp3 oxygen atom was found to be 0.70 A; for an sp2
oxygen atom a shorter length of 0.3 Awas optimal. When applied to water, this approach to locating the lone pair
positions and assigning the partial charges yielded a model that was essentially indistinguishable from TIP-5P.
Therefore, we believe this model is well suited for use with TIP-5P.[76] The new files are named O6EP (originally
04EP), as they have been corrected for numerous typographical errors and updated to match current naming and
residue structure conventions.

3.3.7. Carbohydrate Naming Convention in GLYCAM

In order to incorporate carbohydrates in a standardized way into modeling programs, as well as to provide a stan-
dard for X-ray and NMR protein database files (pdb), we have developed a three-letter code nomenclature. The
restriction to three letters is based on standards imposed on protein data bank (PDB) files by the RCSB PDB Ad-
visory Committee (www.rcsb.org/pdb/pdbac.html), and for the practical reason that all modeling and experimental
software has been developed to read three-letter codes, primarily for use with protein and nucleic acids.

As a basis for a three-letter PDB code for monosaccharides, we have introduced a one-letter code for monosac-
charides (Table 3.5).[77] Where possible, the letter is taken from the first letter of the monosaccharide name.
Given the endless variety in monosaccharide derivatives, the limitation of 26 letters ensures that no one-letter
(or three-letter) code can be all encompassing. We have therefore allocated single letters firstly to all 5- and 6-
carbon, non-derivatized monosaccharides. Subsequently, letters have been assigned on the order of frequency of
occurrence or biological significance.

Using three letters (Tables 3.6 to 3.8), the present GLYCAM residue names encode the following content:
carbohydrate residue name (Glc, Gal, etc.), ring form (pyranosyl or furanosyl), anomeric configuration (¢ or f3,
enantiomeric form (D or L) and occupied linkage positions (2-, 2,3-, 2,4,6-, etc.). Incorporation of linkage position
is a particularly useful addition, since, unlike amino acids, the linkage cannot otherwise be inferred from the
monosaccharide name. Further, the three-letter codes were chosen to be orthogonal to those currently employed
for amino acids.

48



3.3. Carbohydrates

Carbohydrate” One letter code” | Common Abbreviation
1 D-Arabinose A Ara
2 D-Lyxose D Lyx
3 D-Ribose R Rib
4 D-Xylose X Xyl
5 D-Allose N All
6 D-Altrose E Alt
7 D-Galactose L Gal
8 D-Glucose G Glc
9 D-Gulose K Gul
10 D-Idose 1 Ido
11 D-Mannose M Man
12 D-Talose T Tal
13 D-Fructose C Fru
14 D-Psicose P Psi
15 D-Sorbose B¢ Sor
16 D-Tagatose J Tag
17 D-Fucose (6-deoxy D-galactose) F Fuc
18 | D-Quinovose (6-deoxy D-glucose) Q Qui
19 | p-Rhamnose (6-deoxy D-mannose) H Rha
20 D-Galacturonic Acid o? GalA
21 D-Glucuronic Acid z4 GlcA
22 D-Iduronic Acid u¢ IdoA
23 D-N-Acetylgalactosamine v GalNac
24 D-N-Acetylglucosamine Y4 GIcNAc
25 D-N-Acetylmannosamine wd ManNAc
26 N-Acetyl-neuraminic Acid s NeuNAc, NeuSAc
KDN KN4 KDN
KDO KO KDO
N-Glycolyl-neuraminic Acid SGed NeuNGc, Neu5Gce

Table 3.5.: The one-letter codes that form the core of the GLYCAM residue names for monosaccharides “ Users
requiring prep files for residues not currently available may contact the Woods group (www.glycam.org)
to request generation of structures and ensemble averaged charges. "Lowercase letters indicate L-
sugars, thus L-Fucose would be “f”, see Table 3.8 . “Less common residues that cannot be assigned
a single letter code are accommodated at the expense of some information content. *Nomenclature
involving these residues will likely change in future releases.[77] Please visit www.glycam.org for the
most updated information.
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a—D-Glep B—D-Galp o—D-Arap B—D-Xylp
Linkage Position | Residue Name | Residue Name | Residue Name | Residue Name

Terminal” 0GA? OLB 0AA 0XB

1-¢ 1GAS ILB 1AA 1XB

2- 2GA 2LB 2AA 2XB

3- 3GA 3LB 3AA 3XB

4- 4GA 4LB 4AA 4XB
6- 6GA 6LB

2,3- ZGA? ZLB ZAA ZXB

2,4- YGA YLB YAA YXB
2,6- XGA XLB

3,4- WGA WLB WAA WXB
3,6- VGA VLB
4,6- UGA ULB

2,3,4- TGA TLB TAA TXB
2,3,6- SGA SLB
2,4,6- RGA RLB
3,4,6- QGA QLB
2,3,4,6- PGA PLB

Table 3.6.: Specification of linkage position and anomeric configuration in D-hexo- and D-pentopyranoses in three-
letter codes based on the GLYCAM one-letter code “In pyranoses A signifies o.-configuration; B = J.
bPreviously called GA, the zero prefix indicates that there are no oxygen atoms available for bond
formation, i.e., that the residue is for chain termination. €Introduced to facilitate the formation of a
1-1"linkage as in a-D-Glc-1-1"-0-D-Gle {1GA 0GA}. “ For linkages involving more than one position,
it is necessary to avoid employing prefix letters that would lead to a three-letter code that was already
employed for amino acids, such as ALA.

a-D-Glcf B-D-Manf a-D-Araf B-D-Xylf
Linkage position | Residue name | Residue name | Residue name | Residue name
Terminal 0GD OMU 0AD 0XU
1- 1GD IMU 1AD 1XU
2- 2GD 2MU 2AD 2XU
3- 3GD 3MU 3AD 3XU
etc. etc. etc. etc. etc.

Table 3.7.: Specification of linkage position and anomeric configuration in D-hexo- and Dpentofuranoses in three-
letter codes based on the GLYCAM one-letter code. In furanoses D (down) signifies o.; U (up) = B.

o-L-Glcp B-L-Manp o-L-Arap B-L-Xylp
Linkage position | Residue name | Residue name | Residue name | Residue name
Terminal OgA OmB 0aA 0xB
1- 1gA ImB laA 1xB
2- 2gA 2mB 2aA 2xB
3- 3gA 3mB 3aA 3xB
etc. etc. etc. etc. etc.

letter codes.

Table 3.8.: Specification of linkage position and anomeric configuration in L-hexo- and Lpentofuranoses in three-




3.4. Lipids

3.4. Lipids

Biological processes in the human body are dependent on highly specific molecular interactions. The vast
majority of the interactions take place in compartments within the cell, and an understanding of the behavior of
the membranes that compartmentalize and enclose the cell is therefore critical for rationalizing these processes.
Biological membranes are complex structures formed mostly by lipids and proteins. For this reason lipid bilay-
ers have received a lot of attention both computationally and experimentally for many years.[78, 79] The vital
role of cell membranes is underlined by the estimation that over half of all proteins interact with membranes, ei-
ther transiently or permanently.[80] Further, G protein-coupled receptors embedded in the membrane account for
50-60% of present day drug targets, and membrane proteins as a whole make up around 70%.[81] Even so, only
685 resolved unique structures of membrane embedded proteins, out of a total of 65 500 searchable entries (after
removing redundant structures), exist in the Protein Data Bank (April 2017) reflecting the difficulties in studying
membrane-associated proteins experimentally, making them prime targets for simulation.

Prior to 2012, the only force field parameters for lipids distributed with AmberTools were part of the Gly-
cam force field and were limited in scope.[71] Traditionally, lipid simulations with Amber have either employed
the Charmm parameters, via support for the Charmm force fields through the Chamber package[82] or through
attempts to adapt the General Amber Force Field (GAFF) with limited success.

In 2012, Amber greatly expanded support for simulation of lipids. This includes the development of a modular
framework for lipid simulations and initial parameterization within the LIPID11 force field[83] as well as a careful
refinement of the non-bonded parameters and associated torsion terms within the GAFF force field for specific
application to lipids.[84] The latter, GAFFLipid, was the first lipid parameter set based on the Amber force field
equation to support simulation of lipid bilayers in the tensionless NPT ensemble while the former, LIPID11, pro-
vided the first modular framework for constructing lipid simulations analogous to the Amber amino and nucleic
acid force fields. Together these developments have made simulation of phospholipids with AMBER substantially
easier. LIPID14 was released in 2014 [85] and represented a major advancement over the previous Amber compat-
ible lipid force fields for lipid bilayer simulations in the NPT ensemble without the need for an artificial constant
surface tension term. Validation of the LIPID14 parameters were provided through extensive self-assembly simu-
lations [86, 87]. Inclusion and validation of parameters for cholesterol [88] represented an important addition to
the lipid parameter set, allowing even more complex lipid containing systems to be simulated. LIPID17 is the most
recent release of Amber lipid parameters. It builds upon the modularity of LIPID14 and provides an extension of
modular phospholipid residues to include anionic head groups and polyunsaturated tails. In the process the bonded
alkane parameters have been revised and updated by fitting to quantum energies. Furthermore, new partial charges
have been generated for all the head group residues in order to accommodate the anionic head groups whilst main-
taining consistency in the charge derivation approach. Details regarding the parameterization are given in Skjevik
et al. (######). The modular nature of the force field allows for many combinations of lipid head and tail groups as
well as rapid and standardized parameterization of additional lipids. LIPID17 was validated through bilayer sim-
ulations of eighteen different phospholipid types, for a total of 0.6 microseconds each without applying a surface
tension or constant area term. The lipid bilayer structural features compare favorably with experimental measures
such as area per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion.

In Amberl8, packmol-memgen was included into the list of available software, allowing the user to generate
membrane systems in a simple and automated way (12.6).

3.4.1. LIPID17: The Amber lipid force field

leaprc.lipidl?7 defines atom types and loads the files below
1lipidl7.1ib atoms, charges, and topologies for LIPID17 residues
lipidl7.dat LIPID17 force field parameters

The LIPID17 force field represented the logical next step in the development of an Amber lipid force field that
build on the modular nature of LIPID11[83] and LIPID 14 [85] to allow for tensionless lipid bilayer simulations in
Amber. LIPID17 (####) has been designed to be fully compatible with the other pairwise-additive protein, nucleic
acid, carbohydrate, and small molecule Amber force fields.
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Description \ LIPID17 Residue Name
Acyl chain Lauroyl (12:0) LAL
Myristoyl (14:0) MY
Palmitoyl (16:0) PA
Oleoyl (18:1 n-9) OL
Stearoyl (18:0) ST
Arachidonoyl (20:4) AR
Docosahexaenoyl (22:6) DHA
Head group Phosphatidylcholine PC
Phosphatidylethanolamine PE
Phosphatidylserine PS
Phosphatidylglycerol PGR
Phosphaditic acid PH-
Other Cholesterol CHL

Table 3.9.: LIPID17 residue names.

Lipid 1 sn-1 tail residue
head group residue
sn-2 tail residue
TER card

Lipid 2 sn-1 tail residue
head group residue
sn-2 tail residue
TER card

Table 3.10.: LIPID17 PDB format for LEaP

LIPID17 is a modular force field for the simulation of phospholipids and cholesterol. To achieve this modularity
phospholipids are divided into interchangeable head group and tail group "residues."

Currently, there are seven tail group residues and five head group residues supported, as well as cholesterol, and
LEaP supports any combination of these lipid residues. The supported LIPID17 residues and their residue names
are listed in Table 3.9. LIPID17 can be used alone or in conjunction with other Amber force fields. The order
with which the various AMBER force fields are loaded along with LIPID17 should not matter. For example, to
load ff14SB and LIPID17 in LEaP use:

source leaprc.protein.ff14SB

source leaprc.lipidl?

LIPID17 PDB format

LIPID17 atom names and types are defined in Skjevik, et al[83], Dickson, et al[85], Madej et al[88] and Skjevik
et al (####).

A properly formatted lipid PDB can be loaded into LEaP. Each phospholipid molecule in LIPID17 is made up
of three residues. Atoms from each residue must be in contiguous blocks and ordered as described below in each
molecule. A TER card must be appended after all the atoms for each molecule. Table 3.10 specifies the residue
format for the PDB file loaded by LEaP in order to correctly define linker atoms.

The connectivity (CONECT records) section of the PDB is redundant and should be removed prior to loading
into LEaP. The head group and tail residues are linked together by the LEaP program after loading the lipid PDB
file.

PDB formatted structure files with alternative residue and atom names (such as Charmm C36) may be
converted to the LIPID17 naming convention by way of the script called charmmlipid2amber.py which is supplied
with AmberTools to convert Charmm C36 residue and atom names to LIPID17 nomenclature.
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charmmlipid2amber.py —i charmm_c36.pdb -o output 1lipidl7.pdb

Additionally, membrane systems can be prepared by means of the packmol-memgen included software (12.6).

3.5. Solvents

leaprc.water.<type> loads solvents.lib and the appropriate frcmod file

solvents.lib library for water, methanol, chloroform, NMA, urea
frcmod.tipdp Parameter changes for TIP4P.

frcmod.tip4pew Parameter changes for TIP4PEW.

frcmod. tip5p Parameter changes for TIP5P.

frcmod. spce Parameter changes for SPC/E.

frcmod. spceb Parameter changes for SPC/Eb.

frcmod. opc Parameter changes for OPC.

frcmod.opc3 Parameter changes for OPC3.

frcmod.pol3 Parameter changes for POL3.

frcmod. tip3pfb Parameter changes for the force-balance TIP3P model
frcmod.tip4pfb Parameter changes for the force-balance TIP4P model
frcmod.meoh Parameters for methanol.

frcmod.chel3 Parameters for chloroform.

frcmod.nma Parameters for N-methyacetamide.

frcmod.urea Parameters for urea (or urea-water mixtures).

Amber provides direct support for several water models.

There is no default, but TIP3P[89] will be used for residues with names HOH or WAT, following a long tradition.
Despite the fact that many properties of this old water model deviate significantly from those of real water, the
model has an impressive track record and is still a popular choice in biomolecular simulations. There is more
than one good reason behind this tenacity other than simple inertia[18]. In particular, many older force fields
were parametrized in simulations that used TIP3P as the solvent: errors in the solvent part of the total energy are
compensated, to an extent, by fitted parameters of the gas phase (solute) part. As a result, many existing force fields
are inherently biased towards TIP3P to various degrees. Replacing TIP3P with another water model without re-
parametrizing the underlying gas-phase force field may not necessarily lead to better accuracy of the biomolecular
simulation that might be expected to benefit from the more accurate water model. Fortunately, AMBER force fields
are not very strongly biased towards any specific water model, which makes the task of testing new models easier.
In recent years several new models appeared that describe the state of liquid water much more accurately than
TIP3P, these models showed significant improvements in outcomes of many types of biomolecular simulations,
even with older force fields. A recent addition to AMBER family of protein force fields, ff99SB[19], was developed
without an inherent bias towards a water model; OPC is recommended for use with this force field[19].

If you want to use water models other than TIP3P, execute the following LEaP commands after loading your
leaprec file:

WAT = PL3 (residues named WAT in pdb file will be POL3)
source leaprc.water.pol3

(The above is obviously for the POL3 model.) The solvents.lib file contains TIP3P,[89] TIP3P/F,[90] TIP4P,[89,
91] TIP4P/Ew,[92, 93] TIP5P,[94] OPC,[20] OPC3,[95], POL3[96], SPC/E[97], SPC/Eb[29], TIP3PFB[31] and
TIP4PFB[31] models for water; these are called TP3, TPF, TP4, T4E, TP5, OPC, OP3, PL3, SPC, SPC, FB3 and
FB4, respectively. (The SPC/E and SPC/Eb models are both called SPC: you just have to be sure to load the
appropriate frcmod file.) By default, the residue name in the prmtop file will be WAT, regardless of which water
model is used.

The “standard” leaprc files for tip3p, spce, tip4pew and opc also load the Joung/Cheatham monovalent ion
parameters (see below). If you wish to use other parameters, or to deal with divalent or other ions, you will need
to load the appropriate frcmod files.
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Amber has two flexible water models, one for classical dynamics, SPC/Fw[98] (called “SPF”) and one for
path-integral MD, gSPC/Fw[99] (called “SPG”). You would use these in the following manner:

WAT = SPG
loadAmberParams frcmod.gspcfw
set default FlexibleWater on

Then, when you load a PDB file with residues called WAT, they will get the parameters for gSPC/Fw. (Obviously,
you need to run some version of quantum dynamics if you are using gSPC/Fw water.)

The solvents.lib file, which is automatically loaded with many leaprc files, also contains pre-equilibrated boxes
for many of these water models. These are called POL3BOX, QSPCFWBOX, SPCBOX, SPCFWBOX, TIP3PBOX,
TIP3PFBOX, TIPAPBOX, TIPAPEWBOX, OPCBOX, OPC3BOX, and TIPSPBOX. These can be used as argu-
ments to the solvateBox or solvateOct commands in LEaP.

In addition, non-polarizable models for the organic solvents methanol, chloroform and N-methylacetamide are
provided,[100] along with a box for an 8M urea-water mixture. The input files for a single molecule are in
SAMBERHOME/dat/leap/prep, and the corresponding frcmod files are in SAMBERHOME/dat/leap/parm. Pre-
equilibrated boxes are in SAMBERHOME/dat/leap/lib. For example, to solvate a simple peptide in methanol, you
could do the following:

source leaprc.protein.ff14SB (get a standard force field)
loadAmberParams frcmod.meoh (get methanol parameters)

peptide = sequence { ACE VAL NME } (construct a simple peptide)
solvateBox peptide MEOHBOX 12.0 0.8 (solvate the peptide with meoh)
saveAmberParm peptide prmtop prmcrd

quit

Similar commands will work for other solvent models.

3.5.1. The OPC family of water models

OPC is a new non-polarizable, 4-point, 3-charge rigid water model.[20] Geometrically, it resembles TIP4P-like
models, although the values of OPC point charges and charge-charge distances are quite different. The model has
a single VDW center on the oxygen nucleus. The model is constructed based on the concept of optimal point
charge approximation; [101] the central idea of OPC is to distribute the point charges to best reproduce the 3
lowest order multipole moments of water molecule in liquid phase. The optimal values for the dipole i and the
square quadrupole moment Q7 [102] are determined as best fit values that reproduce key experimental properties
of water in liquid phase. The low dimensionality of the parameter space yu-Qr permits a virtually exhaustive
search. The linear quadrupole and the octupole moments[103] are fixed to values obtained from high quality QM
calculations.[102]

A full description of OPC and its properties can be found in Ref.[20]. For 11 key liquid state properties against
which water models are most often benchmarked, OPC is on average within 0.76% of the experiment (relative
error). This accuracy is dramatically better compared to the commonly used rigid models. For example, the
dielectric constant of TIP3P and TIP4PEw is 94 and 63.9 respectively, while OPC predicts it to be 78.4+0.6 (the
experimental value is 78.4). The reported OPC properties were computed using Amber 12 on GPUs with a time-
step of 2 fs, periodic boundary conditions, an 8 angstrom cut-off for nonbonded interactions, and PME for long
range electrostatics. SHAKE was used to constrain hydrogens. The rest of parameters are set to current Amber
defaults; note that these include accounting for the van der Waals interactions beyond the cut-off via a continuum
model (vdwmeth=1).

OPC in biomolecular simulations: Because of the improved accuracy in bulk properties, OPC delivers no-
ticeable accuracy improvement in practical biomolecular simulations, even with existing force-fields. Specifically,
OPC was found to yield quantitative agreement with NMR experiment for conformational populations of small
RNA fragments,[56, 104, 105] and therefore is a commonly used water model for RNA simulations. [106—108]
OPC has been shown to improve structural description of DNA dublex,[62] DNA G-quadruplex, [109] thermody-
namics of ligand binding,[110] small molecule hydration,[20] rotational dynamics of proteins, [111] simulations
of lipid monolayer, [112] and intrinsically disordered proteins.[42, 113]
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Ion parameters for OPC: Two sets of 12-6 LJ parameters for OPC water model (the 12-6 I0OD set and the
12-6 HFE set) for 3 monovalent ions (Na+, K+, CI-) have been developed by Li, Merz and co-workers; see
Section 3.6 for the definition and important usage suggestions. Our tests show that the deviation of the Ion-Oxygen
Distances (IODs) predicted using the 12-6 HFE set from the reference IOD values is within +0.2A. Comparing
these deviations to those reported for other ion parameter sets available, it seems that the magnitude of the deviation
is borderline acceptable, which means that the HFE set might also work in situations where 10D is formally
recommended. For Na+ the transferability is not an issue as Hydration Free Energy (HFE) and IOD parameters are
essentially the same. In situations where agreement of HFEs with one of the common experimental references is
critical, the use of OPC-specific parameters (the 12-6 HFE set) for K+, Na+, and CI- may be advisable. The IOD
parameter set are recommended to be used in the structural refinement. Additional OPC-specific ion parameters
have been reported recently.[114]

Based on our limited experience, it appears that the Joung/Cheatham ion parameters for TIP4P-EW (jc_tip4pew)[115]

may also be acceptable for OPC water model, especially when accurate reproduction of IODs is critical. One ad-
vantage of using the jc_tip4pew set is that it provides a consistent set of parameters for most biologically relevant
ions, not just K+, Na+, and CI-. Another advantage at the moment is that the set has already been tested in practice
with OPC model.[56, 110]

OPC3 water model: OPC3 — a 3-point rigid non-polarizable water model — is the latest addition to the fam-
ily, constructed using the same philosophy as OPC. Further details are available in Ref.[95]. Briefly, OPC3 is
significantly more accurate than the commonly used water models of same class (TIP3P, SPC/E) in reproducing a
comprehensive set of liquid bulk properties, over a wide range of temperatures. Relative to the 4-point OPC, OPC3
is somewhat less accurate comapred to experiment. Until model-specific ion parametrs have been developed, we
cautiosly recommend the Joung/Cheatham ion parameters previously developed for TIP3P to be used with OPC3.

3.6. lons

fremod.ionsjc_tip3p Joung/Cheatham ion parameters for TIP3P water

frcmod. ionsjc_spce same, but for SPC/E water

frcmod.ionsjc_tip4dpew same, but for TIP4P/EW water

frcmod.ionsllm 126_tip3p Li/Merz ion parameters for +1 and -1 ions in TIP3P water (12-6 normal us
frcmod.ionsllm_126_spce same, but in SPC/E water

frcmod.ionsllm 126_tip4pew same, but in TIP4P/EW water

fremod.ionsllm iod Li/Merz ion parameters for +1 and -1 ions (12-6 IOD set)
frcmod.ions2341m_126_tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water (12-6 normal u
frcmod.ions2341lm_126_spce same, but in SPC/E water

frcmod.ions2341m_126_tip4pew same, but in TIP4P/EW water

frcmod.ions2341m _hfe tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water (12-6 HFE set)
frcmod.ions2341lm_hfe_spce same, but in SPC/E water

frcmod.ions2341m_hfe_ tipdpew same, but in TIP4PEW water

frcmod.ions2341m _iod tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water (12-6 IOD set)
frcmod.ions2341lm_iod_spce same, but in SPC/E water

frcmod.ions2341m_iod tip4pew same, but in TIP4P/EW water

frcmod.ionsllm 1264 _tip3p Li/Merz ion parameters for -1 and +1 ions in TIP3P water (12-6-4 set)
frcmod.ionsllm_1264_spce same, but in SPC/E water
frcmod.ionsllm 1264 _tip4pew same, but in TIP4PEW water

frcemod.ions2341m_1264_tip3p Li/Merz ion parameters for +2 to +4 ions in TIP3P water (12-6-4 set)
frcmod.ions2341m_1264_spce same, but in SPC/E water
frcmod.ions2341m_1264_tip4dpew same, but in TIP4PEW water

frcmod.ionsllm 126_hfe_ opc Li/Merz ion parameters for +1 and -1 ions in OPC water (12-6 HFE set)
frcmod.ionsllm_126_iod_opc Li/Merz ion parameters for +1 and -1 ions in OPC water (12-6 IOD set)
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atomic_ions.1lib topologies for monoatomic ions (new naming scheme)

ions94.1ib topologies for ions with the old naming scheme

In 2008, Joung and Cheatham created a consistent set of parameters for alkali halide ions, fitting solvation
free energies, radial distribution functions, ion-water interaction energies and crystal lattice energies and lattice
constants for non-polarizable spherical ions.[115, 116] These have been separately parametrized for each of three
popular water models, as indicated above.

Li, Merz and co-workers subsequently developed ion parameters for the monovalent, divalent, trivalent and
tetravalent ions for the 12-6 LJ nonbonded model and the 12-6-4 LJ-type nonbonded model for PME simulations.[117-
120] The experimental values they tried to reproduce are the experimental Hydration Free Energy (HFE) values,
Ion-Oxygen Distance (IOD) values and Coordination Number (CN) values of the first solvation shell. It was found
that it is hard to reproduce the three experimental values simultaneously by using the 12-6 LJ nonbonded model.
Since the charge-induced dipole interaction is proportional to ¥~* , a new term with format (C/r)* was added
to the 12-6 LJ potential, yielding a 12-6-4 LJ-type potential. The new potential with designed parameters could
reproduce the experimental HFE, IOD and CN values at the same time without significant compromise. Especially
for the highly charged metal ions, the 12-6-4 LJ-type nonbonded model performs much better than the 12-6 one
overall. Similar to Joung and Cheatam’s work, three water models were treated separately for the parameter design,
as indicated in the name of fremod files. Users can check the notes in the frcmod files to see the reference of each
parameter.

For the 12-6 LJ nonbonded model, three different parameter sets are available for each water model to meet
different requirements:

1. 12-6 normal usage set. This contains the HFE set of the monovalent ions (which could reproduce the ex-
perimental HFE),[120] the Compromise (CM) set of divalent ions (which could reproduce the experimental
relative HFE and CN values),[118] and the IOD set (which could reproduce the experimental IOD) for the
trivalent and tetravalent ions.[119] These parameters are recommended to be used in the normal MD
simulations. This is because for the monovalent ions the error of the 12-6 LJ nonbonded model is pretty
small (a CM set may not be needed since the HFE or IOD sets are pretty close to each other) while for the
trivalent and tetravalent metal ions the 12-6 LJ nonboned model has relatively big errors (a CM set could
have big errors for both HFE and IOD at this moment).

2. 12-6 HFE set to reproduce experimental HFE.[117, 119, 120] The HFE parameter set has limited error for
monovalent ions, while could have remarkable error for highly charged ions. Since we use the HFE set for
monovalent ions in the 12-6 normal usage set, we don’t have a specific HFE set parameter file for monovalent
ions.

3. 12-6 IOD set to reproduce experimental IOD.[117, 119, 120] Since the ion with certain parameter could re-
produce similar IOD values in the three water models, so the IOD set parameters of three water models were
designed identical (for the monovalent and divalent metal ions, while for the trivalent and tetravalent ions,
the IOD set are estimated for each water model separately). The IOD parameter set are recommended to
be used in the structural refinement or for structural property orientated investigation.

For the 12-6-4 LJ-type nobonded model, only one parameter set (12-6-4 set) designed for each of the three water
models. The 12-6-4 model has also been tested in mixed systems (such as nucleic acids, proteins and ionic solu-
tions) and have shown excellent transferability.[118—120] In the recent work of Panteva et al., the 12-6-4 model was
shown to give greaty improved structural, thermodynamic, kinetic and mass transport properties for Mg?*in water
relative to the 12-6 model..[121] The 12-6-4 model with the SPC/E water model performed exceptionally well for
simulating all properties in these benchmark calculations.[121] The parameters which are specifically designed for
the divalent metal ions with 12-6-4 LJ-type nonbonded model are shown as the 12-6-4 set above. These frcmod files
can be used to generate an original prmtop file. After obtaining the original prmtop file, you can use the add12_6_4
command in parmed to generate a prmtop with the additionalCy terms with the flag LENNARD_JONES_CCOEF. Please
see the add12_6_4 command14.2.2.6 in Subsection14.2.2 in the manual for detailed information. After obtaining
the prmtop with the additional C4 term, you can use sander or pmemd to run the simulation. Recently Penteva et
al. fine-tuned the C4 terms between several divalent metal ions (Mg>*, Mn?*, Zn?*, and Cd** ) and nucleic acid
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systems[122] while keep theCy4 terms between metal ions and water desgined by Li and Merz.[118] The new pa-
rameter set could better balance the interaction types in the nucleic acid systems, and been shown to be predictive in
identifying metal ion binding sites in nucleic acids[123], and are recommended to use in related modeling. An re-
lated tutorial is shown in the following webpage: "http://ambermd.org/tutorials/advanced/tutorial20/12_6_4.htm".

3.7. Modified amino acids and nucleotides

Parameters for phosphorylated amino acids [50, 124] to be used for ff99SB and older forcefields can be
obtained with the following command in LEaP:

source leaprc.phosaal0

Updated parameters have been developed for newer versions of the Stony Brook (SB) family of forcefields, with
new forcefield parameters for the side chains of phosphorylated amino acids [125], in addition to modified amino
acids [126] that are commonly used in experimental studies such as FRET and EPR. These side-chain parameters
are optimized for use with ff14SB and ff19SB by fitting against relative QM energies at the MP2/6-311+G**
level using our inhouse torsion fitting protocol[127]. Currently, side-chain parameters for phosphorylated serine,
histidine (deprotonated, protonated), tyrosine, and threonine are provided. For ff14SB, parameters for
phosphorylated amino acids [125] can be obtained with the following command in LEaP:

source leaprc.phosaal4SB

For ff19SB, parameters for phosphorylated amino acids [125] can be obtained with the following command in
LEaP:

source leaprc.phosaal9SB

The modified amino acids selenomethionine, cyano-phenylalanine, and azido-phenylalanine are used as FRET
quenchers. We also added parameters for the nitroxide spin-label methanesulfonothioate (MTSL), which is often
used in EPR experiments to probe distances. We also added parameters for acetylated lysine. For
selenomethionine, we fit new LJ parameters for selenium, as well as bond, angle, and dihedral parameters for the
C-Se bond. To use these parameters for ff14SB, the user can run the following command in LEaP:

source leaprc.protein.ff14SB_modAA
To use these parameters for ff19SB, the user can run the following command in LEaP:

source leaprc.protein.ff19SB_modAA

The ff19SB_modAA leaprc will load lib and frcmod files that have the CX to XC atom type conversion, the
backbone phi/psi dihedrals will be zeroed, and the LEU CMAP will be applied to all five residues.

The residue names for these modified amino acids are MSE (selenomethionine), AZF (azido-phenylalanine),
CYF (cyano-phenylalanine), CNX (MTSL) and ALY (acetylated-lysine). These residue names should match those
in the loaded file with the coordinates (e.g. PDB file). The residue names can also be used with the sequence
command in LEaP to create XYZ coordinates. Since the modifications for the phosphorylated and modified amino
acids are on the side chains and not the backbone, users can use these modifications with ff19SB.

Many post-translational modifications are also available at http.//selene.princeton.edu/FFPTM/. Parameters for
common modifications for RNA nucleotides [54]can by loaded with “source leaprc.modrna08”. Pointers to
other sets of Amber-compatible force fields may be found at the Amber web site, http://ambermd.org/.

Additional parameters for six common fluorescent protein chromophores—eGFP, eBFP, e YFP, eCFP, DsRed, and
mCherry—are available[128] by sourcing leaprc.xFPchromophores after sourcing the main force field leaprc file
(e.g. leaprc.protein.ffi4SB). This will allow seamless loading of PDB files containing fluorescent proteins provided
they follow standard naming of the chromophore: eGFP=CRO, eBFP=IIC, eYFP=CR2, eCFP=CRF, DsRed=
CRQ, and mCherry=CH6. The chromophore parameters are based on parm10 with the ff14SB modifications,
but also borrow heavily from GAFF. Both uppercase and lowercase atom types are utilized, so users should take
caution if mixing ff14SB with GAFF. See original reference[128] for details of implementation.
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3.8. Force fields related to semi-empirical QM

ParmAM1 and parmPMa3 are classical force field parameter sets that reproduce the geometry of proteins mini-
mized at the semi-empirical AM1 or PM3 level, respectively.[129] These new force fields provide an inexpensive,
yet reliable, method to arrive at geometries that are more consistent with a semi-empirical treatment of protein
structure. These force fields are meant only to reproduce AM1 and PM3 geometries (warts and all) and were
not tested for use in other instances (e.g., in classical MD simulations, etc.) Since the minimization of a pro-
tein structure at the semi-empirical level can become cost-prohibitive, a “preminimization” with an appropriately
parametrized classical treatment will facilitate future analysis using AM1 or PM3 Hamiltonians.

3.9. The GAL17 force field for water over platinum

leaprc.music Adds atom types and loads music.lib and music.dat
music.lib Library for metal surface atoms, virtual sites, and Drude rod particles.
music.dat Parameters for metal surface, Drude rod particles and LJ terms with water.

The GAL17 force field[130] was developed as part of the MuSiC project (Multiscale Simulations in Catalysis)
to describe the interaction of water and a Pt(111) surface. The GAL17 force field is implemented in the sander
program and can be combined with any water model. It provides a significant improvement over previously
existing force fields for Pt(111)/water interactions. Its well-balanced performance suggests that it is an ideal
candidate to generate relevant geometries for the metal/water interface, paving a way to a representative sampling
of the equilibrium distribution at the interface and to predict solvation free energies at the solid/liquid interface. At
present only parameters for water over Pt(111) are available, however, the force field is extensible to other metal
surface and solutes such as alcohols or sugar molecules that are typical substrates in catalytic upgrading of biomass
extracts. The GAL17 force field consists of

* A Lennard-Jones term between Pt atoms and water oxygen atoms that describes physisorption of water at
the surface.

* A polarized Gaussian term between Pt surface atoms and water oxygen atoms that describes chemisorption
at Pt top sites.

» Two terms that describe the angular dependence of the water/Pt surface interaction energy.

The GAL17 force field thus does not include explicit terms to describe image charge interactions, that is electro-
static interactions between charged particles and a metallic conductor, explicitly. Instead these effects are included
implicitly. In addition, it has been shown that image charge interactions account for less than 10% of the interac-
tion energy for water adsorbed at a Pt(111) surface[131]. Although not employed in GAL17, the music force field
library does contain parameters for a symmetric Drude rod model[131] that can be employed to investigate image
charge effects.

In GAL17 the platinum surface atoms have atom name Pt and residue name MET. The platinum surface must
be perpendicular to one of the Cartesian coordinate axes. Water molecules must be above the surface (coordinate
values larger than the metal atoms). Given a properly formatted pdb file that contains a platinum metal surface
and water molecules, one would use the GAL17 force field with TIP3P water in the following manner:

source leaprc.music

source leaprc.water.tip3p

ptwat = loadpdb ptwat.pdb
saveAmberParm ptwat prmtop inpcrd

This will load the correct LJ parameters between platinum and water oxygen atoms. In addition, one needs to
activate the Gaussian and angle adsorption correction terms via the &music namelist. This namelist also provides
an option to define the orientation of the surface plane. All force field parameters can be controlled via this
namelist, advanced users may want to look into the source code file music_module. F90 for all available options.
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At present there are no good parameters for platinum metal and simulations must therefore constrain the position
of the platinum atoms. This can be conveniently achieved with belly dynamics. A typical input would thus
contain

&cntrl
ibelly = 1, ! constrain atom positions
bellymask = ’@O,H1,H2’ ! let water molecules move
/
&music
pt_plane = 'yz’ ! default is 'xy’, i.e. surface in xy plane
/

When running simulations with sander in parallel, it may be advisable to orient the metal surface in the yz plane to
achieve better load balancing with the algorithm that is used by sander to distribute work across MPI tasks. Tests
that may serve as examples how to build input files and run simulations with GAL17 are contained in directory
SAMBERHOME/test/sander_music/.

3.10. Fluorescent dyes: AMBER-DYES in AMBER force field files

leaprc.amberdyes defines atom types and loads the files below
amberdyes.lib atoms, charges, and topologies for dye and linker residues
amberdyes .dat AMBER-DYES in AMBER force field parameters

The AMBER-DYES force field parameters[132] were implemented into the AMBER Software Suite[133]. Flu-
orescence ligands, so-called dyes, are widely used to investigate protein structures and dynamics, such as con-
formational changes, folding, association and dissociation of complexes, and enzymatic cycles. Dyes are usable
with multi-protein and single-protein systems. MD simulations with explicit dyes can improve the interpretation
of experimental results. Especially in Forster Resonance Energy Transfer (FRET) experiments, it is of utmost
importance to obtain precise information about the position and orientation of the dyes.

At the moment AMBER-DYES in AMBER covers 22 commonly used dyes and 6 linkers (see table below):

Dye Residue name | Linker residue Dye Residue name | Linker residue
Alexa Fluor 350 A35 CIR,LIR ATTO 390 T39 C2R, L1R
Alexa Fluor 488 A48 BIR, CIR, LIR ATTO 425 T42 C2R,LIR
Alexa Fluor 532 AS3 CIR,LIR ATTO 465 T46 C2R,L1R
Alexa Fluor 568 A56 CIR,LIR ATTO 488 T48 C3R,L2R
Alexa Fluor 594 A59 CIR,LIR ATTO 495 T49 C2R,L1R
Alexa Fluor 647 A64 BIR, C2R, L1IR ATTO 514 T51 C3R, L2R
Lumiprope Cy3 C3N C2R,L1R ATTO 520 T52 C2R,L1R
Lumiprope Sulfo-Cy3 C3w LIR ATTO 610 T61 C2R,LIR
Lumiprope Cy5 C5N C2R,LIR ATTO Thiol2 Tth C3R.L2R
Lumiprope Sulfo-Cy5 C5W LIR
Lumiprope Cy5.5 C55 C2R,LIR
Lumiprope Cy7 C7N LIR
Lumiprope Cy7.5 C75 L1R

Table 3.11.: AMBER-DYES in AMBER residue names.

To attach a linker / dye combination to your structure, hand-edit your PDB file, similarly to 3.2.3, and choose
an attachment point (e.g. residue 3):

ATOM 16 ND2 ASN E 2 3.872 30.857 39.020 1.00 13.86 N
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ATOM 17 N ILE E 3 5.739 34.298 36.056 1.00 14.08 N
ATOM 18 CA ILE E 3 4.144 36.258 39.575 1.00 7.14 (o]
ATOM 19 C ILE E 3 5.305 36.089 40.541 1.00 9.18 (o]
ATOM 20 O ILE E 3 5.662 37.000 41.282 1.00 12.86 (o]
ATOM 21 CB ILE E 3 4.933 36.389 35.001 1.00 13.23 (o]
ATOM 22 CGl ILE E 3 5.138 37.899 35.089 1.00 11.53 (o]
ATOM 23 CG2 ILE E 3 3.449 36.064 35.230 1.00 12.95 (o]
ATOM 24 CD1 ILE E 3 6.522 38.291 34.603 1.00 11.29 (o]
ATOM 25 N PHE E 4 4.507 35.854 38.224 1.00 11.91 N

Change the residue name (ILE) of the CA atom to the linker residue name (e.g. C1R) and delete the rest of the
residue:

ATOM 16 ND2 ASN E 2 3.872 30.857 39.020 1.00 13.86 N
ATOM 18 CA CIRE 3 4.144 36.258 39.575 1.00 7.14 C
ATOM 25 N PHE E 4 4.507 35.854 38.224 1.00 11.91 N

Append your PDF file with the C99 atom of your dye (e.g. Alexa Fluor 488) after the TER card:

ATOM 1317 N ASN E 163 19.398 31.025 41.679 1.00 38.17 N
TER 1318 ASN E 163
ATOM 1319 C99 A48 E 164

Use LEaP to load the AMBER-DYES in AMBER force field (at best by sourcinv leaprc.amberdyes, load your
updated PDB file, set a bond between the dye (always atom C99) and linker (always atom N99), and relax the
structure:

source leaprc.amberdyes

pdb = loadpdb 1481.pdb

bond pdb.A48.C99 pdb.ClR.N99
select pdb.A48

select pdb.C1lR

relax pdb

saveAmberParm pdb prmtop inpcrd

Additional settings are subject to personal preference. LEaP will produce a structure with a bonded dye usable for
MD simulations. Do, however, check the generated structure for sanity before using it.

3.11. Coarse-grained and multiscale simulations using the SIRAH force
field

In the following section, we briefly introduce the Coarse-Grained (CG) force field named SIRAH, which has
been completely ported to Amber and is compatible with multiscale simulations. SIRAH is a residue-based top-
down force field developed to reproduce structural properties of biomolecules, granting a speed up of above 2
orders of magnitude in comparison to all-atom simulations, with a reasonable compromise on accuracy.[134] Cur-
rently, it includes parameters for DNA,[135] phospholipids,[136] and proteins (including the most frequent post-
translational modifications.[137] Most recently, metal ions to be used as cofactors have been incorporated.[138]
Notably, SIRAH uses its own water model for explicit solvent called WatFour (WT4 for shortness), which also
includes monovalent electrolytes (Na+, K+, and CI-).[139] Four interconnected beads mimicking an elementary
water cluster constitute the WT4 water model. Since each bead carries a partial charge, WT4 creates its dielectric
permittivity, while the use of explicit electrolytes allows setting the ionic strength in the solution.

SIRAH uses the standard two-body classical Hamiltonian implemented in most common MD packages, and in
particular in Amber. Hence, common concepts as partial charges, atom types, and equilibrium distances/angles can
be straightforwardly transferred from atomistic to CG simulations. In this way, simulations performed with SIRAH
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can fully profit from GPU acceleration and analysis programs included in common MD packages. Mapping from
fully atomistic structures uses the position of real atoms to place interacting beads. Therefore, equilibrium values
in the bonded terms of the Hamiltonian are directly extracted from experimental or canonical structures, reducing
free parameters and facilitating the backmapping from CG to all-atoms.[140] Because of this, conformational
preferences (i.e., helical, extended beta or coil conformations in proteins, and the B-form in DNA) are introduced
in the bonded part of the Hamiltonian, obviating topological biases or the need to impose elastic network models
to fix secondary structures.

Since CG beads carry a partial charge, electrostatic interactions are calculated at long range via the Particle
Mesh Ewald method.

Perhaps the main difference with a fully atomistic force field regards the use of parameters for the calculation of
the Lennard-Jones potential. Although most of the interactions are calculated in the standard way, some of them
are not calculated using normal combination rules but set to specific values between pairs of beads. This provides
a flexible and convenient option to fix interactions that only apply to certain pairs of beads without modifying the
entire force field. In particular, this feature is used in SIRAH to fine-tune the balance between electrostatic and
Lennard-Jones interactions.

3.11.1. Available simulation schemes

Currently, the following CG and multiscale simulation schemes are available in SIRAH:

1. Explicit solvent CG simulations: they may include complex systems (Protein, DNA, Membranes, water, and
ions)[134, 136, 139]

2. Implicit solvent CG simulations: Currently available only for DNA using generalized Born model with
ighb=1.[135, 141]
3. Multiscale simulations: These can be performed in three fashions:

a) - Multiscale solvation: fine grain (FG, or fully atomistic) solute solvated with atomistic water + CG
water + supra CG water. This scheme is particularly well suited for highly solvated systems as virus
capsids[142] and is transferable to different force fields. Indeed, the WT4 water model has been tested
to work in combination with TIP3P, SPC and SPC/e water models.[143]

b) - Dual scale DNA simulations: this scheme can deal with single or double-stranded DNA in which
a certain number of nucleotides are defined at the atomistic level, while the rest is treated at the CG
level. Simulations can be performed in explicit or implicit solvent (see point 2). SIRAH parameters
have been developed to work with the bscO FG force field,[144, 145] and successfully checked for
compatibility with the newer bscl version.

¢) - QM/(FG/CG) simulations: this scheme profits from the possibility to run QM/MM simulations in
AMBER. The current implementation has been only tested in a Russian-doll fashion with a quantum
region surrounded by FG nucleotides nested in a CG double helix.[146]

3.11.2. Preparing your system for a CG simulation

In a nutshell, SIRAH is provided simply as another force field, plus a set of tools. In principle, all you need to
get started is previous knowledge on how to run an MD simulation with AMBER and a fully protonated structure.
Schematically, you can set up a CG simulation in three very simple steps.

1. Create a symbolic link in your working directory to ensure you will find the required files:

1n -s $AMBERHOME/dat/SIRAH/ .

2. Map the FG structure to CG. In its simplest form just type

./SIRAH/tools/CGCONV/cgconv.pl —-i your_protonated FG_file.pdb -o your_CG_file.pdb

This will return a CG PDB file with standard mapping options. All options are shown typing:
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./SIRAH/tools/CGCONV/cgconv.pl -h

In your Leap file you will have to:

AddPath SIRAH
source leaprc.sirah

For instance, a typical Leap file for the protein ICRN would look like:

# Load SIRAH force field
addPath ./sirah.amber
source leaprc.sirah
# Load model
protein = loadpdb 1CRN_cg.pdb
# Info on system charge
charge protein
# Set S-S bridges
bond protein.3.BSG protein.40.BSG
bond protein.4.BSG protein.32.BSG
bond protein.16.BSG protein.26.BSG
# Add solvent, counterions and 0.15M NaCl
# Tuned solute-solvent closeness for best hydration
solvateOct protein WT4BOX 20 0.7
addIonsRand protein NaWw 22 ClwW 22
# Save Parms
saveAmberParmNetcdf protein 1CRN_cg.prmtop 1CRN_cg.ncrst
# EXIT quit

Notice that three disulfide bonds are created. For this to work, the Cysteine names in your PDB file must be
edited from their thiol name (see comment on residue naming below).

Thereafter it is just normal Amber stuff!

Step-by-step tutorials on different cases of interest can be found in SAMBERHOME/dat/SIR AH/tutorial/. In
particular, using input files and initialization protocols contained therein is strongly suggested. Note that the version
included in this release corresponds to the version SIRAH 2.1. We recommend users to check and download the
latest updates from www.sirahff.com.

3.11.3. Tips and tricks.
Answers to frequently asked questions can be found at SAMBERHOME/dat/SIRAH/tutorial/SIRAH_FAQs.pdf.

1.
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The FG to CG mapping in SIRAH is intended to preserve physicochemically important interaction points
(for example, Watson-Crick interactions in DNA). Therefore, the positions of Hydrogen atoms are needed
in some residues, for instance, in Serine. Because of this, the starting point for CG simulation is a properly
protonated PDB file. Amber naming is fully supported.

An important point to keep in mind is that the use of a 12-6 term for the Lennard-Jones interaction in
a generally flatten CG surface may be potentially troublesome. Large steric repulsions in the absence of
topological restraints could produce spurious structural distortions particularly sensitive to steric clashes.
Hence, it is always a good idea (although not strictly necessary) to start with a well-relaxed set of starting
coordinates.

Although appealing, the coarse-graining philosophy based on keeping important interaction points has the
negative feature that a simple recipe for arbitrary molecular moieties does not exist, and new functional
groups must be tested case by case.

Solvation may be a potential source of problems. SIRAH uses Leap tools solvateBox or solvateOct to solvate
CG solutes. However, the relatively large size of a CG water molecule may create vacuum holes nearby the
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solute that can lead to strong (unscreened) electrostatic interactions in the solute’s surface. Similarly, when
adding electrolytes, the use of addlons or addlonsRand, which substitute one water molecule by one ion,
might be problematic if the ionic positions lie very close to the solute’s surface. Most likely, these problems
will be fixed during the initialization protocol described in the tutorials. However, as in any simulation, the
user should carefully check the initial set up.

5. In proteins, residues are named with lower "s" and the one-letter-code for amino acids (i.e., Alanine is sA). A
third letter may indicate a residue modification. For instance, sE or sD stands for a Glutamate or Aspartate,
respectively, while sEh or sDh correspond to protonated versions of those amino acids. Besides standard
amino acids, the following modifications are available.

a) sX: Cysteine in S-S bond

b) sCp: Palmitoylated cysteine.

¢) sEh, sDh: protonated acidic residues

d) sHe, sHd: Histidine protonated in epsilon and delta positions

e) sSp, sTp, sYp: phosphorylated aminoacids.

f) sKa, sKm: Acetylated and methylated Lysine, respectively.

6. Zwitterionic and non-zwitterionic terminals are available. However, unlike the protein force fields included

in AMBER, ACE and NME residues do not exist in SIRAH. Zwitterionic terminals are the default option
but neutral terminals can be set by renaming the corresponding residues from s[one-letter-code] to a[one-

letter-code] (Nt-acetylated) or m[one-letter-code] (Ct-amidated) after mapping. For example, to set a neutral
N-terminal Histidine protonated at N€ rename it from “sHe” to “aHe”.

7. Analysis: The Tcl script sirah_vmdtk.tcl provided in SAMBERHOME/dat/SIRAH/tools/ contains a series
of analysis and visualization tools to be used in VMD including backmapping, calculation of secondary
structures. Additionally, it provides visualization macros to obtain the right connectivity, sizes, etc.[140]

3.12. Obsolete force field files

The following files are included for historical interest. We do not recommend that these be used any more for
molecular simulations. The leaprc files that load these files have been moved to $AMBERHOME/dat/leap/cmd/oldff.

3.12.1. The Weiner et al. (1984,1986) force fields

all.in All atom database input.

allct.in All atom database input, COO- Amino acids.
allnt.in All atom database input, NH3+ Amino acids.
uni.in United atom database input.

unict.in United atom database input, COO- Amino acids.
unint.in United atom database input, NH3+ Amino acids.
parm91X.dat Parameters for 1984, 1986 force fields.

The ff86 parameters are described in early papers from the Kollman and Case groups.[147, 148] [The “parm91”
designation is somewhat unfortunate: this file is really only a corrected version of the parameters described in
the 1984 and 1986 papers listed above.] These parameters are not generally recommended any more, but may
still be useful for vacuum simulations of nucleic acids and proteins using a distance-dependent dielectric, or for
comparisons to earlier work. The material in parm91X.dat is the parameter set distributed with Amber 4.0. The
STUB nonbonded set has been copied from parmuni.dat; these sets of parameters are appropriate for united atom
calculations using the “larger” carbon radii referred to in the “note added in proof” of the 1984 JACS paper. If
these values are used for a united atom calculation, the parameter scnb must be defined in the prmtop file and
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should be set to 8.0; for all-atom calculations it should be 2.0. The scee parameter should be defined in the prmtop
file and set to 2.0 for both united atom and all-atom variants. Note that the default value for scee is now 1.2 (the
value for 1994 and later force fields); this must be explicitly defined in the prmtop file when using the earlier force
fields.

parm91X.dat is not recommended. However, for historical completeness a number of terms in the non-bonded
list of parm91X.dat should be noted. The non-bonded terms for I (iodine), CU (copper) and MG (magnesium) have
not been carefully calibrated, but are given as approximate values. In the STUB set of non-bonded parameters, we
have included parameters for a large hydrated monovalent cation (IP) that represent work by Singh et al.[149] on
large hydrated counterions for DNA. Similar values are included for a hydrated anion (IM).

The non-bonded potentials for hydrogen-bond pairs in ff86 use a Lennard-Jones 10-12 potential. If you want to
run sander with ff86 then you will need to recompile, adding -DHAS_10_12 to the Fortran preprocessor flags.

3.12.2. The Cornell et al. (1994) force field

all nuc94.in Nucleic acid input for building database.

all_amino94.in Amino acid input for building database.

all_aminoct94.in COO- amino acid input for database.

all _aminont94.in NH3+ amino acid input for database.

nacl.in Ion file.

parm94.dat 1994 force field file.

parm96.dat Modified version of 1994 force field, for proteins.
parm98.dat Modified version of 1994 force field, for nucleic acids.

Contained in ff94 are parameters from the so-called “second generation” force field developed in the Kollman
group in the early 1990s.[30] These parameters are especially derived for solvated systems, and when used with an
appropriate 1-4 electrostatic scale factor, have been shown to perform well at modeling many organic molecules.
The parameters in parm94.dat omit the hydrogen bonding terms of earlier force fields. This is an all-atom force
field; no united-atom counterpart is provided. 1-4 electrostatic interactions are scaled by 1.2 instead of the value
of 2.0 that had been used in earlier force fields.

Charges were derived using Hartree-Fock theory with the 6-31G* basis set, because this exaggerates the dipole
moment of most residues by 10-20%. It thus “builds in” the amount of polarization which would be expected in
aqueous solution. This is necessary for carrying out condensed phase simulations with an effective two-body force
field which does not include explicit polarization. The charge-fitting procedure is described in Ref [30].

The £f96 force field [150] differs from parm94.dat in that the torsions for ¢ and y have been modified in
response to ab initio calculations [151] which showed that the energy difference between conformations were
quite different than calculated by Cornell et al. (using parm94.dat). To create parm96.dat, common V1 and V2
parameters were used for ¢ and y, which were empirically adjusted to reproduce the energy difference between
extended and constrained alpha helical energies for the alanine tetrapeptide. This led to a significant improvement
between molecular mechanical and quantum mechanical relative energies for the remaining members of the set of
tetrapeptides studied by Beachy ef al. Users should be aware that parm96.dat has not been as extensively used
as parm94.dat, and that it almost certainly has its own biases and idiosyncrasies, including strong bias favoring
extended f conformations.[22, 152, 153]

The 198 force field [154] differs from parm94.dat in torsion angle parameters involving the glycosidic torsion
in nucleic acids. These serve to improve the predicted helical repeat and sugar pucker profiles.

3.12.3. The Wang et al. (1999) force field

parm99.dat Basic force field parameters
all_amino94.in topologies and charges for amino acids
all_amino94nt.in same, for N-terminal amino acids

all amino94ct.in same, for C-terminal amino acids

all nuc94.in topologies and charges for nucleic acids
gaff.dat Force field for general organic molecules
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all_modrna08.1lib topologies for modified nucleosides
all modrna0O8.frcmod parameters for modified nucleosides

The ff99 force field [155] points toward a common force field for proteins for “general” organic and bio-organic
systems. The atom types are mostly those of Cornell ef al. (see below), but changes have been made in many
torsional parameters. The topology and coordinate files for the small molecule test cases used in the development
of this force field are in the parm99_lib subdirectory. The ff99 force field uses these parameters, along with the
topologies and charges from the Cornell et al. force field, to create an all-atom nonpolarizable force field for
proteins and nucleic acids.

There are more than 99 naturally occurring modifications in RNA. Amber force field parameters for all these
modifications have been developed to be consistent with ff94 and ff99.[54] The modular nature of RNA was taken
into consideration in computing the atom-centered partial charges for these modified nucleosides, based on the
charging model for the “normal” nucleotides.[156] All the ab initio calculations were done at the Hartree-Fock
level of theory with 6-31G(d) basis sets, using the GAUSSIAN suite of programs. The computed electrostatic
potential (ESP) was fit using RESP charge fitting in antechamber. Three-letter codes for all of the fitted nucleosides
were developed to standardize the naming of the modified nucleosides in PDB files. For a detailed description of
charge fitting for these nucleosides and an outline for the three letter codes, please refer to Ref. [54].

The AMBER force field parameters for 99 modified nucleosides are distributed in the form of library files. The
all_modrna08.1ib file contains coordinates, connectivity, and charges, and all_modrna08.frcmod contains infor-
mation about bond lengths, angles, dihedrals and others. The AMBER force field parameters for the 99 modified
nucleosides in RNA are also maintained at the modified RNA database at http://ozone3.chem.wayne.edu.

3.12.4. The 2002 polarizable force fields

fremod. ££02pol.rl Recommended initialization file

parm99.dat Force field, for amino acids and some organic molecules;
can be used with either additive or
non-additive treatment of electrostatics.

parm99EP .dat Like parm99.dat, but with "extra-points": off-center
atomic charges, somewhat like lone-pairs.

frcmod. ££02pol.rl Updated torsion parameters for £ff£02.

all nuc02.in Nucleic acid input for building database, for a non-
additive (polarizable) force field without extra points.

all _amino02.in Amino acid input ...

all aminoct02.in COO- amino acid input ...

all aminont02.in NH3+ amino acid input ....

all nucO2EP.in Nucleic acid input for building database, for a non-

additive (polarizable) force field with extra points.
all aminoO2EP.in Amino acid input ...
all _aminoctO02EP.in COO- amino acid input ...

all_aminont02EP.in NH3+ amino acid input ....

The ff02 force field is a polarizable variant of ff99. (See Ref. [157] for a recent overview of polarizable force
fields.) Here, the charges were determined at the B3LYP/cc-pVTZ//HF/6-31G* level, and hence are more like “gas-
phase” charges. During charge fitting the correction for intramolecular self polarization has been included.[100]
Bond polarization arising from interactions with a condensed phase environment are achieved through polarizable
dipoles attached to the atoms. These are determined from isotropic atomic polarizabilities assigned to each atom,
taken from experimental work of Applequist. The dipoles can either be determined at each step through an iterative
scheme, or can be treated as additional dynamical variables, and propagated through dynamics along with the
atomic positions, in a manner analogous to Car-Parinello dynamics. Derivation of the polarizable force field
required only minor changes in dihedral terms and a few modification of the van der Waals parameters.

Subsequently, a set up updated torsion parameters has been developed for the ff02 polarizable force field.[158]
These are available in the fremod. [f02pol.rl file.

The user also has a choice to use the polarizable force field with extra points on which additional point charges
are located; this is called ff02EP. The additional points are located on electron donating atoms (e.g. O,N,S), which
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mimic the presence of electron lone pairs.[159] For nucleic acids we chose to use extra interacting points only on
nucleic acid bases and not on sugars or phosphate groups.

There is not (yet) a full published description of this, but a good deal of preliminary work on small molecules
is available.[100, 160] Beyond small molecules, our initial tests have focused on small proteins and double helical
oligonucleotides, in additive TIP3P water solution. Such a simulation model, (using a polarizable solute in a non-
polarizable solvent) gains some of the advantages of polarization at only a small extra cost, compared to a standard
force field model. In particular, the polarizable force field appears better suited to reproduce intermolecular inter-
actions and directionality of H-bonding in biological systems than the additive force field. Initial tests show ffO2EP
behaves slightly better than ff02, but it is not yet clear how significant or widespread these differences will be.

3.12.5. Older ion parameters

In the past, for alkali ions with TIP3P waters, Amber has provided the values of Aqvist,[161] adjusted for
Amber’s nonbonded atom pair combining rules to give the same ion-OW potentials as in the original (which were
designed for SPC water); these values reproduce the first peak of the radial distribution for ion-OW and the relative
free energies of solvation in water of the various ions. Note that these values would have to be changed if a
water model other than TIP3P were to be used. Rather arbitrarily, Amber also included chloride parameters from
Dang.[162] These are now known not to work all that well with the Aqvist cation parameters, particularly for the
K/Cl pair. Specifically, at concentrations above 200 mM, KCI will spontaneously crystallize; this is also seen with
NaCl at concentrations above 1 M.[163] These “older” parameters are now collected in frcmod.ionsff99_tip3p, but
are not recommended except to reproduce older simulations.
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Implicit solvent methods can speed up atomistic simulations by approximating the discrete solvent as a contin-
uum, thus drastically reducing the number of particles in the system. An additional effective speedup often comes
from much faster sampling of the conformational space afforded by these methods.[164—168] The generalized
Born (GB) solvation model is the most commonly used implicit solvent model for atomistic MD simulation; it has
been most widely tested on ff99SB and ff14SBonlysc, but in principle could be used with other non-polarizable
force fields, such as ff03. A recent (2019) review gives a good overview.[169] To estimate the total solvation
free energy of a molecule, AGy,;,, one typically assumes that it can be decomposed into the "electrostatic" and
"non-electrostatic" parts:

AGSOIV = AGel + AGnonel (41)

where AG,,,,; is the free energy of solvating a molecule from which all charges have been removed (i.e. partial
charges of every atom are set to zero), and AG,; is the free energy of first removing all charges in the vacuum,
and then adding them back in the presence of a continuum solvent environment. Generally speaking, AG,oer
comes from the combined effect of two types of interaction: the favorable van der Waals attraction between the
solute and solvent molecules, and the unfavorable cost of breaking the structure of the solvent (water) around the
solute. In the current Amber codes, this is taken to be proportional to the total solvent accessible surface area (SA)
of the molecule, with a proportionality constant derived from experimental solvation energies of small non-polar
molecules, and uses a fast LCPO algorithm [170] to compute an analytical approximation to the solvent accessible
area of the molecule.

The Poisson-Boltzmann approach described in the next section has traditionally been used in calculating AG,;.
However, in molecular dynamics applications, the associated computational costs are often very high, as the
Poisson-Boltzmann equation needs to be solved every time the conformation of the molecule changes. Amber
developers have pursued an alternative approach, the analytic generalized Born (GB) method, to obtain a rea-
sonable, computationally efficient estimate to be used in molecular dynamics simulations. The methodology has
become popular,[171-178] especially in molecular dynamics applications,[179-182] due to its relative simplicity
and computational efficiency, compared to the more standard numerical solution of the Poisson-Boltzmann equa-
tion. Within Amber GB models, each atom in a molecule is represented as a sphere of radius R; with a charge g;
at its center; the interior of the atom is assumed to be filled uniformly with a material of dielectric constant 1. The
molecule is surrounded by a solvent of a high dielectric € (80 for water at 300 K). The GB model approximates
AG,; by an analytical formula,[171, 183]

1 qiq; (1 _exp[—KfGs] > @2)

AGy ~ —=

¢ zizj’fGB(VipRiaRj) €

where 7;; is the distance between atoms i and j, the R; are the so-called effective Born radii, and Sfes() is a certain
smooth function of its arguments. The electrostatic screening effects of (monovalent) salt are incorporated [183]
via the Debye-Huckel screening parameter k.

A common choice [171] of fgp is

1/2

fep= [rlzj +RiR; eXP(_’izj/4Rin)] 49

although other expressions have been tried.[174, 184] The effective Born radius of an atom reflects the degree of its
burial inside the molecule: for an isolated ion, it is equal to its van der Waals (VDW) radius p;. Then one obtains
the particularly simple form:
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2
AG, = —di (1 - 1) 4.4)

where we assumed x = O (pure water). This is the famous expression due to Born for the solvation energy of
a single ion. The function fgp() is designed to interpolate, in a clever manner, between the limit ri; — 0, when
atomic spheres merge into one, and the opposite extreme r;; — oo, when the ions can be treated as point charges
obeying the Coulomb’s law.[177] For deeply buried atoms, the effective radii are large, R; > p;, and for such atoms
one can use a rough estimate R; ~ L;, where L; is the distance from the atom to the molecular surface. Closer to
the surface, the effective radii become smaller, and for a completely solvent exposed side-chain one can expect R;
to approach p;.

The effective radii depend on the molecule’s conformation, and so have to be re-computed every time the confor-
mation changes. This makes the computational efficiency a critical issue, and various approximations are normally
made that facilitate an effective estimate of R;. With the exception of GBNSRG6 (see Section 5.1), the so-called
Coulomb field approximation, or CFA, is used for Amber GB models, which replaces the true electric displacement
around the atom by the Coulomb field. Within this assumption, the following expression can be derived:[177]

1
R =p = [6(rl = p)r iy 4.5)

where the integral is over the solute volume surrounding atom i. For a realistic molecule, the solute boundary
(molecular surface) is anything but trivial, and so further approximations are made to obtain a closed-form ana-
Iytical expression for the above equation, e.g. the so-called pairwise de-screening approach of Hawkins, Cramer
and Truhlar,[185] which leads to a GB model implemented in Amber with ighb=1. The 3D integral used in the
estimation of the effective radii is performed over the van der Waals (VDW) spheres of solute atoms, which im-
plies a definition of the solute volume in terms of a set of spheres, rather than the complex molecular surface,[186]
commonly used in the PB calculations. For macromolecules, this approach tends to underestimate the effective
radii for buried atoms,[177] arguably because the standard integration procedure treats the small vacuum—filled
crevices between the van der Waals (VDW) spheres of protein atoms as being filled with water, even for struc-
tures with large interior.[184] This error is expected to be greatest for deeply buried atoms characterized by large
effective radii, while for the surface atoms it is largely canceled by the opposing error arising from the Coulomb
approximation, which tends [172, 176, 187] to overestimate R;.

The deficiency of the model described above can, to some extent, be corrected by noticing that even the opti-
mal packing of hard spheres, which is a reasonable assumption for biomolecules, still occupies only about three
quarters of the space, and so "scaling-up" of the integral by a factor of four thirds should effectively increase the
underestimated radii by about the right amount, without any loss of computational efficiency. This idea was devel-
oped and applied in the context of pH titration,[177] where it was shown to improve the performance of the GB
approximation in calculating pKa values of protein sidechains. However, the one-parameter correction introduced
in Ref. [177] was not optimal in keeping the model’s established performance on small molecules. It was therefore
proposed [182] to re-scale the effective radii with the re-scaling parameters being proportional to the degree of the
atom’s burial, as quantified by the value I; of the 3D integral. The latter is large for the deeply buried atoms and
small for exposed ones. Consequently, one seeks a well-behaved re-scaling function, such that R; = ( pf] —I)™!
for small /;, and R; > (pf] —I;)~! when I; becomes large. The following simple, infinitely differentiable re-scaling
function was chosen to replace the model’s original expression for the effective radii:

R7'=p; " —p; ! tanh(aW — BW* + y¥7) (4.6)
where ¥ = [;p;, and o, 3, y are treated as adjustable dimensionless parameters which were optimized using the
guidelines mentioned earlier (primarily agreement with the PB). Currently, Amber supports two GB models (
termed OBC ) based on this idea. These differ by the values of o, 8, ¥, and are invoked by setting igb to either
igb=2 or igb=5. The details of the optimization procedure and the performance of the OBC model relative to the
PB treatment and in MD simulations on proteins is described in Ref. [182]; an independent comparison to the PB
in calculating the electrostatic part of solvation free energy on a large data set of proteins can be found in Ref.
[188].

Our experience with generalized Born simulations is mainly with ff99SB, ff14SBonlysc or ff03; the current GB
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.t [ 2 [ 5 [ 7 [ 8 |
’ mbondi ‘ mbondi2 ‘ mbondi2 ‘ bondi ‘ mbondi3 ‘

Table 4.1.: Recommended radii sets for various GB models. For values of igh given in the top row, the string in the
second row should be entered in LEaP as “set default PBRadii xxx”.

models are not compatible with polarizable force fields. Replacing explicit water with a GB model is equivalent to
specifying a different force field, and users should be aware that none of the GB options (in Amber or elsewhere)
is as mature as simulations with explicit solvent; user discretion is advised. For example, it was shown that
salt bridges are too strong in some of these models [189, 190] and some of them provide secondary structure
distributions that differ significantly from those obtained using the same protein parameters in explicit solvent,
with GB having too much o-helix present.[191, 192] The combination of the ffI/4SBonlysc force field with igb=8
gives the best results for proteins [25][193], nucleic acids and protein-nucleic acid complexes. [194]

Despite these limitations, implicit treatment of solvent is widely used in molecular simulations for two main
reasons: algorithmic/computational speed and conformational sampling. [168, 195] Implicit solvent methods can
be algorithmically/computationally faster, as measured by simulation time steps per processor (CPU) time, because
the vast number of individual interactions between the atoms of individual solvent molecules do not need to be
explicitly computed. Implicit-solvent simulations can also sample conformational space faster in the low viscosity
regime afforded by the implicit solvent model.[164—168] To some extent, the interest in implicit-solvent-based
simulations is motivated by the need to sample very large conformational spaces for problems such as protein
folding, binding-affinity calculations, or large-scale fluctuations of nucleosomal DNA fragments. The speedup of
conformational change can vary considerably, depending on the details of the transition, and can range from no
speedup at all to almost a 100-fold speedup. [168] In general, the larger the conformational change, the higher the
speedup one may expect, but this tendency is not universal or uniform. These speedup values are also expected to
vary by the specific flavour of GB model used, a detailed analysis for igb5 can be found in Ref. [168].

The generalized Born models used here are based on the "pairwise" model introduced by Hawkins, Cramer and
Truhlar,[185, 196] which in turn is based on earlier ideas by Still and others.[171, 176, 187, 197] The so-called
overlap parameters for most models are taken from the Tinker molecular modeling package (http://tinker.wustl.edu).
The effects of added monovalent salt are included at a level that approximates the solutions of the linearized
Poisson-Boltzmann equation.[183] The original implementation was by David Case, who thanks Charlie Brooks
for inspiration. Details of our implementation of generalized Born models can be found in Refs. [198, 199].

4.1. GB/SA input parameters

As outlined above, there are several "flavors" of GB available, depending upon the value of igh. The version
that has been most extensively tested corresponds to igh=1; the "OBC" models (igh=2 and 5) are newer, but ap-
pear to give significant improvements and are recommended for most projects (certainly for peptides or proteins).
The newest, most advanced, and least extensively tested model, GBn (igh=7), yields results in considerably better
agreement with molecular surface Poisson-Boltzmann and explicit solvent results than the "OBC" models under
many circumstances.[192] The GBn model was parameterized for peptide and protein systems and is not rec-
ommended for use with nucleic acids. A modification on the GBn model (igh=8) further improves agreement
between Poisson-Boltzmann and explicit solvent data compared to the original formulation (igh=7).[25] Users
should understand that all (current) GB models have limitations and should proceed with caution. Generalized
Born simulations can only be run for non-periodic systems, i.e. where ntb=0. Unlike its use in explicit solvent
PME simulations, short nonbonded cutoff values have much stronger impact on accuracy of the GB calculations.
Essentially, any cutoff values other than cut > structure size can lead to artifacts. Current GPU implementation of
the GB can not use cutoffs. An alternative that retains most of the speed of the GB with a cutoff, but without most
of its artifacts, is GB-HCP described in Section 39.5. If the nonbonded cutoff is used in GB calculations, it should
be greater than that for PME calculations, perhaps cut=16. The slowly-varying forces generally do not have to be
evaluated at every step for GB, either nrespa=2 or 4, although that option may lead to some artifacts as well.

igb =0 No generalized Born term is used. (Default)
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=1 The Hawkins, Cramer, Truhlar[185, 196] pairwise generalized Born model is used, with param-

eters described by Tsui and Case.[198] This model uses the default radii set up by LEaP. It is
slightly different from the GB model that was included in Amber6. If you want to compare to
Amber 6, or need to continue an ongoing simulation, you should use the command "set default
PBradii amber6" in LEaP, and set igh=1 in sander. For reference, the Amber6 values are those
used by an earlier Tsui and Case paper.[180] Note that most nucleic acid simulations have used
this model, so you take care when using other values. Also note that Tsui and Case used an
offset (see below) of 0.13 A, which is different from its default value.

=2 Use a modified GB model developed by A. Onufriev, D. Bashford and D.A. Case; the main

idea was published earlier,[177] but the actual implementation here[182] is an elaboration of
this initial idea. Within this model, the effective Born radii are re-scaled to account for the
interstitial spaces between atom spheres missed by the GBCT approximation. In that sense,
GBYBC is intended to be a closer approximation to true molecular volume, albeit in an average
sense. With igh=2, the inverse of the effective Born radius is given

by:cedure
R;I = ﬁfl —tanh (Ot‘I’ —B¥?+ }"P3) /pi

where p; = p; —offset, and ¥ = Ip;, with I given in our earlier paper. The parameters c,
B, and y were determined by empirical fits, and have the values 0.8, 0.0, and 2.909125. This
corresponds to model I in Ref [182]. With this option, you should use the LEaP command "set
default PBradii mbondi2" to prepare the prmtop file.

=3 or 4 These values are unused; they were used in Amber 7 for parameter sets that are no longer

supported.

=5 Same as igh=2, except that now «, 3,7 are 1.0, 0.8, and 4.85. This corresponds to model II

in Ref [182]. With this option, you should use the command "set default PBradii mbondi2"
in setting up the prmtop file, although "set default PBradii bondi" is also OK. When tested in
MD simulations of several proteins,[182] both of the above parameterizations of the "OBC"
model showed equal performance, although further tests [188] on an extensive set of protein
structures revealed that the igh=35 variant agrees better with the Poisson-Boltzmann treatment
in calculating the electrostatic part of the solvation free energy.

=6 With this option, there is no continuum solvent model used at all; this corresponds to a non-

periodic, "vacuum", model where the non-bonded interactions are just Lennard-Jones and
Coulomb interactions.

=7 The GBn model described by Mongan, Simmerling, McCammon, Case and Onufriev[200] is

employed. This model uses a pairwise correction term to GB?CT to approximate a molecular
surface dielectric boundary; that is to eliminate interstitial regions of high dielectric smaller
than a solvent molecule. This correction affects all atoms and is geometry-specific, going be-
yond the geometry-free, "average" re-scaling approach of GB?2C, which mostly affects buried
atoms. With this method, you should use the bondi radii set. The overlap or screening pa-
rameters in the prmtop file are ignored, and the model-specific GBn optimized values are sub-
stituted. The model carries little additional computational overhead relative to the other GB
models described above.[200] This method is not recommended fcedureor systems involving
nucleic acids.

=8 Same GB functional form as the GBn model (igb=7), but with different parameters. The offset,

overlap screening parameters, and gbneckscale are changed. In addition, individual o, B, and
vy parameters can be specified for each of the elements H, C, N, O, S, P. Parameters for other
elements have not been optimized, and the default values used are the ones from igb=5, which
were not element-dependent. Default values were optimized for H, C, N, O and S atoms in
protein systems.[25] Although the parameters for P in proteins can be specified, the default
values were not optimized and are the igb=5 values. Nucleic acids have separate parameters
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from those used for proteins, and default values were optimized for H, C, N, O and P atoms in
nucleic acid systems.[194]

The following are the default parameters sander uses with igh=8:

Sh=1.425952, Sc=1.058554, Sn=0.733599,

So=1.061039, Ss=-0.703469, Sp=0.5,

offset=0.195141, gbneckscale=0.826836,

gbalphaH=0.788440, gbbetaH=0.798699, gbgammaH=0.437334,
gbalphaC=0.733756, gbbetaC=0.506378, gbgammaC=0.205844,
gbalphaN=0.503364, gbbetaN=0.316828, gbgammaN=0.192915,
gbalpha0S=0.867814, gbbeta0S=0.876635, gbgammaOS=0.387882,
gbalphaP=1.0, gbbetaP=0.8, gbgammaP=4.85

screen_hnu=1.69654, screen_cnu=1.26890,

screen_nnu=1.425974, screen_onu=0.18401, screen_pnu=1.54506,
gb_alpha_hnu=0.53705, gb_beta_ hnu=0.36286, gb_gamma hnu=0.11670,
gb_alpha _cnu=0.33167, gb_beta cnu=0.19684, gb_gamma_cnu=0.09342,
gb_alpha_nnu=0.68631, gb_beta nnu=0.46319, gb_gamma nnu=0.13872,
gb_alpha_onu=0.60634, gb_beta_ onu=0.46301, gb_gamma_ onu=0.14226,
gb_alpha_pnu=0.41836, gb_beta pnu=0.29005, gb_gamma pnu=0.10642

Parameters for proteins and for nucleic acids were optimized separately and can be indepen-
dently specified. Protein parameters: Sh, Sc, Sn, So, Ss and Sp are scaling parameters, gbal-
phaX, gbbetaX, gbgammaX are the o, 3, v set for element X. gbalphaOS, gbbetaOS, gbgam-
maOSs is the o, B, vy set applied to both O and S. The phosphorus parameters (in proteins)
were not optimized and are simply taken as the parameters used in the OBC-2 model (igb=5).
Nucleic acid parameters (end with "nu"): screen_Xnu (X=h, c, n, o, p) are scaling parameters,
gb_alpha_Xnu (X=h, c, n, o, p) are the o, 3, v set for element X.

Since parameters are assigned for each atom based on its residue name (hard-coded in "sander/egb.F90"
(subroutine isnucat)), users need to update the residue table in the sander source code if nucleic
acids with different names are simulated using this GB model.

The default values for offset=0.195141, gbneckscale=0.826836 are recommended for both pro-
teins and nucleic acids.

mbondi3 radii are recommended with ighb=8 and can be employed with the LEaP command
"set default PBradii mbondi3". The mbondi3 radii were adjusted based on protein simulations,
and optimization of these radii for nucleic acids is currently underway.

=10 Calculate the reaction field and nonbonded interactions using a numerical Poisson-Boltzmann
solver. This option is described in the Chapter 6. Note that this is not a generalized Born
simulation, in spite of its use of igb; it is rather an alternative continuum solvent model.

intdiel Sets the interior dielectric constant of the molecule of interest. Default is 1.0. Other values have not
been extensively tested.

extdiel Sets the exterior or solvent dielectric constant. Default is 78.5.

saltcon Sets the concentration (M) of 1-1 mobile counterions in solution, using a modified generalized Born
theory based on the Debye-Hiickel limiting law for ion screening of interactions.[183] Default is 0.0
M (i.e. no Debye-Hiickel screening.) Setting saltcon to a nonzero value does result in some increase
in computation time.

rgbmax This parameter controls the maximum distance between atom pairs that will be considered in car-
rying out the pairwise summation involved in calculating the effective Born radii. Atoms whose
associated spheres are farther way than rgbmax from given atom will not contribute to that atom’s
effective Born radius. This is implemented in a "smooth" fashion (thanks mainly to W.A. Svrcek-
Seiler), so that when part of an atom’s atomic sphere lies inside rgbmax cutoff, that part contributes
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to the low-dielectric region that determines the effective Born radius. The default is 25 A, which is
usually plenty for single-domain proteins of a few hundred residues. Even smaller values (of 10-15
A) are reasonable, changing the functional form of the generalized Born theory a little bit, in ex-
change for a considerable speed-up in efficiency, and without introducing the usual cut-off artifacts
such as drifts in the total energy.

The rgbmax parameter affects only the effective Born radii (and the derivatives of these values with
respect to atomic coordinates). The cut parameter, on the other hand, determines the maximum
distance for the electrostatic, van der Waals and "off-diagonal" terms of the generalized Born inter-
action. The value of rgbmax might be either greater or smaller than that of cut: these two parameters
are independent of each other. However, values of cut that are too small are more likely to lead to
artifacts than are small values of rgbmax; therefore one typically sets rgbmax <= cut.

rbornstat If rbornstat = 1, the statistics of the effective Born radii for each atom of the molecule throughout
the molecular dynamics simulation are reported in the output file. Default is 0.

offset The dielectric radii for generalized Born calculations are decreased by a uniform value "offset" to
give the "intrinsic radii" used to obtain effective Born radii. Default is 0.09 A.

gbsa Option to carry out GB/SA (generalized Born/surface area) simulations. For the default value of 0,
surface area will not be computed and will not be included in the solvation term. If gbsa = I, surface
area will be computed using the LCPO model.[170] If gbsa = 2, surface area will be computed by
recursively approximating a sphere around an atom, starting from an icosahedra. Note that no forces
are generated in this case, hence, ghsa = 2 only works for a single point energy calculation and is
mainly intended for energy decomposition in the realm of MM-GBSA. If gbsa = 3, surface area will
be computed using a fast pairwise approximation [201] suitable for GPU computing in pmemd.cuda
program; the acceleration in pmemd.cuda compared with gbsa = 2 is ~30 times faster [201]. Note
that gbsa = 3 is currently not supported in sander, MM-GBSA, QM/MM or libsff. Although gbsa =
3 is supported in pmemd, the general usage is not recommended as the speed gain is trivial, given that
the algorithm was particularly designed for fast approximation of surface area in GPU-accelerated
GB simulations. Therefore, we recommend users to use gbsa=3 with pmemd.cuda.

surften Surface tension used to calculate the nonpolar contribution to the free energy of solvation (when
gbsa = 1), as Enp = surften*SA. The default is 0.005 kcal/mol/A%.[202] For gbsa = 3, suften works
comparably with gbsa = I given the same value. [201]

rdt This parameter is only used for GB simulations with LES (Locally Enhanced Sampling). In GB+LES
simulations, non-LES atoms require multiple effective Born radii due to alternate descreening effects
of different LES copies. When the multiple radii for a non-LES atom differ by less than RDT, only
a single radius will be used for that atom. See Chapter 29 for more details. Default is 0.0 A.

4.2. ALPB (Analytical Linearized Poisson-Boltzmann)

Like the GB model, the ALPB approximation [203, 204] can be used to replace the need for explicit solvent,
with similar benefits (such as enhanced conformational sampling) and caveats. The basic ALPB equation that
approximates the electrostatic part of the solvation free energy is

1/1 1 1 1 aff
AGy =~ AGypp=—|——— | ———= iqi| —+— 4.7

el al pb ) <8in 8ex> 1+ap %:%CIJ (fGB A > 4.7
where 8 = €,/ €. is the ratio of the internal and external dielectrics, @=0.571412, and A is the so-called effective
electrostatic size of the molecule, see the definition of Arad below. Here fgp is the same smooth function as in the
GB model. The GB approximation is then just the special case of the ALPB when the solvent dielectric is infinite;

however, for finite values of solvent dielectric the ALPB tends to be more accurate. For aqueous solvation, the
accuracy advantage offered by the ALPB is still noticeable, and becomes more pronounced for less polar solvents.
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Statistically significant tests on macromolecular structures [204] have shown that ALPB is more likely to be a
better approximation to PB than the GB. At the same time, the ALPB has virtually no additional computational
overhead relative to GB. However, users should realize that at this point the new model has not yet been tested
nearly as extensively as the canonocal GB model. The ALPB can potentially replace the GB in the energy analysis
of snapshots via the MM-GB/SA scheme. The electrostatic screening effects of monovalent salt are currently
introduced into the ALPB in the same manner as in the GB, and are determined by the parameter saltcon .

alpb Flag for using ALPB to handle electrostatic interactions within the implicit solvent model.

=0 No ALPB (default).

=1 ALPB is turned on. Requires that one of the analytical GB models is also used to compute the
effective Born radii, that is one must set igh=1,2,5, or 7. The ALPB uses the same sets of radii
as required by the particular GB model.

arad Effective electrostatic size (radius) of the molecule. Characterizes its over-all dimensions and global
shape, and is not to be confused with the effective Born radius of an atom. An appropriate value
of Arad must be set if alpb=1: this can be conveniently estimated for your input structure with
the utility elsize that comes with the main distribution. The default is 15 A. While Arad may change
during the course of a simulation, these changes are usually not very large; the accuracy of the ALPB
is found to be rather insensitive to these variations. In the current version of Amber Arad is treated
as constant throughout the simulation, the validity of this assumption is discussed in Ref. [204].
Currently, the effective electrostatic size is only defined for "single-connected" molecules. However,
the ALPB model can still be used to treat the important case of complex formation. In the docked
state, the compound is considered as one, with its electrostatic size well defined. When the ligand
and receptor become infinitely separated, each can be assigned its own value of Arad.

4.2.1. elsize
NAME

elsize - Given the structure, estimates its effective electrostatic size
(parameter Arad ) need by the ALPB model.

SYNOPSIS

Usage: elsize input-pgr-file [-options]

—det an estimate based on structural invariants. DEFAULT.
—ell an estimate via elliptic integral (numerical).

—-elf same as above, but via elementary functions.

—abc prints semi-axes of the effective ellipsoid.

—tab prints all of the above into a table without header.
—-hea prints same table as -tab but with a header.

—deb prints same as -tab with some debugging information.

—-xyz uses a file containing only XYZ coordinates.
DESCRIPTION

elsize is a program originally written by G. Sigalov to estimate the effective electrostatic size of a structure via a
quick, analytical method. The algorithm is presented in detail in Ref. .[204] You will need your structure in a pqr
format as input, which can be easily obtained from the prmtop and inpcrd files using ambpdb utility described
above:

ambpdb -p prmtop -pgr -c inpcrd > input-file-pqgr

After that you can simply do: elsize input-file-pqr , the value of electrostatic size in Angstroms will be output on
stdout. The source code is in the src/etc/ directory, its comments contain more extensive description of the options
and give an outline of the algorithm. A somewhat less accurate estimate uses just the XYZ coordinates of the
molecule and assumes the default radius size of for all atoms:
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elsize input-file-xyz

This option is not recommended for very small compounds. The code should not be used on structures made up
of two or more completely disjoint" compounds — while the code will still produce a finite value of Arad , it is not
very meaningful. Instead, one should obtain estimates for each compound separately.
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GBNSRG6 is an implementation of the Generalized Born (GB) model in which the effective Born radii are com-
puted numerically, via the so-called “R6” integration[205, 206] over molecular surface of the solute:

1 r—r; 173
-1 _ [ _ i
Ry = ( = .%av r—r; 6 dS) 5.1

For most structures, GB solvation based on the numerical R6 radii are virtually as accurate[200] as the GB energies
based on the “gold standard” perfect effective radii, which can in principle be obtained from numerical solution
of the PB equation[184]. As a result, the numerical R6 formulation is generally more accurate than the fast
analytical approaches described above. In contrast to most GB practical models, GBNSR6 model is parameter-
free in the same sense as the numerical PB framework is. Thus, accuracy of GBNSR®6 relative to the PB standard
is virtually unaffected by the choice of input atomic radii. However, unlike the analytical GB models in AMBER,
GBNSRG6 can not yet be used in dynamics. Recent benchmarks show that electrostatic binding energies computed
by GBNSRG6 are in good agreement with the numerical PB reference[207, 208].

Within GBNSRG6, any of the following three versions of the pairwise GB equation can be used for computation of
the solvation energies: (1) the canonical (Still 1990) GB[171], (2) the canonical GB with the ALPB correction[203,
204], and (3) the charge hydration asymmetric generalized Born (CHAGB) model[209]. The models are listed
below; the first two are described in more detail in the GB section of the main manual, a brief introduction into
CHAGSB is below. For more information about these models please refer to the original references.

5.1. GB equations available in gbnsr6

* Canonical GB: the original equation due to Still et al, Eqs.4.2, 4.3.

* ALPB: an inexpensive correction, Eq. 4.7, to Still’s equation that restores correct dependence on dielectric
constants. The correction is recommended in all cases except small molecules with decidedly non-spherical
topology (e.g., rings) or structures that are topologically not singly-connected, e.g., two molecules not in
contact with each other. The electrostatic size is computed automatically, no need to specify it in GBNSR6.

¢ CHAGB: The effect of charge hydration asymmetry (CHA)[103] — non-invariance of solvation free energy
upon solute charge inversion — is incorporated into the Generalized Born framework[209]. The CHA is
added to the GB equation (with or without the ALPB correction) to emulate asymmetric response to solvated
charge of the specified explicit water model, e.g. TIP3P; the asymmetric response, which can be very
strong, is ultimately determined by the charge distribution within the water model. Note that in contrast to
standard GB or PB, CHAGB employs a novel definition of the dielectric boundary that does not subsume
the CHA effects into the intrinsic atomic radii, therefore a special input radii set is used with this model.
This model has so far been tested on a diverse set of neutral small molecules, charged and uncharged amino
acid analogs and small proteins. Noticeable accuracy improvement over the uncorrected GB was reported
for individual solvation energies. The optimum radii set for CHAGB available in this implementation shows
better transferability between different classes of molecules. However, the model has not been tested in the
context of protein-ligand binding, which may require a different radii set for optimum performance.

5.2. Numerical implementation of the R6 integral

* The R6 integral for computing the effective Born radius, Eq. 5.1, is performed for each atom over grid-based
molecular surface of the solute. The molecular surface is based on the field-view method[210] also used in
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the PBSA tool. A uniform Cartesian grid is utilized to discretize a rectangular box containing the molecular
structure. By exploiting the conservation of “electric flux” through the surface, the resulting finite difference
grid surface elements traverse the same solid angle as the spherical surface el