
Analysis of single-cell genomic data with
celda

Sean Corbett 1, Yusuke Koga 1, Shiyi Yang 1, Zhe Wang 1,
and Joshua Campbell ∗1

1Boston University School of Medicine
∗camp@bu.edu

2020-05-10

Contents

1 Introduction . 3

2 Installation . 3

3 Reproducibility note . 3

4 Generation of a simulated single cell dataset 3

5 Performing bi-clustering with celda 4

6 Matrix factorization . 5

7 Visualization. 6

7.1 Creating an expression heatmap using the celda model 6

7.2 Plotting cell populations with tSNE 7

7.3 Displaying relationships between modules and cell populations . . 10

7.4 Examining co-expression with module heatmaps 11

8 Differential Expression Analysis 13

9 Identifying the optimal number of cell subpopulations and fea-
ture modules . 15

9.1 recursiveSplitModule/recursiveSplitCell 15

9.2 celdaGridSearch . 16

10 Miscellaneous utility functions 19

10.1 featureModuleLookup. 19

10.2 recodeClusterZ, recodeClusterY 19

Analysis of single-cell genomic data with celda

11 Session Information . 20

2

Analysis of single-cell genomic data with celda

1 Introduction

CEllular Latent Dirichlet Allocation (celda) is a collection of Bayesian hierarchical models to
perform feature and cell bi-clustering for count data generated by single-cell platforms. This
algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework
that has been popular in text mining applications and has shown good performance with
sparse data. celda simultaneously clusters features (i.e. gene expression) into modules based
on co-expression patterns across cells and cells into subpopulations based on the probabilities
of the feature modules within each cell.

In this vignette we will demonstrate how to use celda to perform cell and feature clustering
with a simple simulated dataset.

2 Installation

celda can be installed from Bioconductor:

if (!requireNamespace("BiocManager", quietly=TRUE)){

install.packages("BiocManager")}

BiocManager::install("celda")

The package can be loaded using the library command.

library(celda)

Complete list of help files are accessible using the help command with a package option.

help(package = celda)

To see the latest updates and releases or to post a bug, see our GitHub page at https:
//github.com/campbio/celda. To ask questions about running celda, post a thread on
Bioconductor support site at https://support.bioconductor.org/.

3 Reproducibility note

Many functions in celda make use of stochastic algorithms or procedures which require the use
of random number generator (RNG) for simulation or sampling. To maintain reproducibility,
all these functions use a default seed of 12345 to make sure same results are generated
each time one of these functions is called. Explicitly setting the seed arguments is needed for
greater control and randomness.

4 Generation of a simulated single cell dataset

celda will take a matrix of counts where each row is a feature, each column is a cell, and each
entry in the matrix is the number of counts of each feature in each cell. To illustrate the
utility of celda, we will apply it to a simulated dataset.

3

https://github.com/campbio/celda
https://github.com/campbio/celda
https://support.bioconductor.org/

Analysis of single-cell genomic data with celda

In the function simulateCells, the K parameter designates the number of cell clusters, the L
parameter determines the number of feature modules, the S parameter determines the number
of samples in the simulated dataset, the G parameter determines the number of features to
be simulated, and CRange specifies the lower and upper bounds of the number of cells to be
generated in each sample.

simCounts <- simulateCells("celda_CG",

K = 5, L = 10, S = 5, G = 200, CRange = c(30, 50))

The counts variable contains the counts matrix. The dimensions of counts matrix:

dim(simCounts$counts)

[1] 200 207

The z variable contains the cluster labels for each cell. Here is the number of cells in each
subpopulation:

table(simCounts$z)

##

1 2 3 4 5

42 44 40 47 34

The y variable contains the feature module assignment for each feature. Here is the number
of features in each feature module:

table(simCounts$y)

##

1 2 3 4 5 6 7 8 9 10

23 39 17 15 21 22 19 12 4 28

The sampleLabel is used to denote the sample from which each cell was derived. In this
simulated dataset, we have 5 samples:

table(simCounts$sampleLabel)

##

Sample_1 Sample_2 Sample_3 Sample_4 Sample_5

43 48 45 40 31

5 Performing bi-clustering with celda

There are currently three models within this package: celda_C will cluster cells, celda_G
will cluster features, and celda_CG will simultaneously cluster cells and features. Within the
function the K parameter will be the number of cell populations to be estimated, while the L
parameter will be the number of feature modules to be estimated in the output model.

celdaModel <- celda_CG(counts = simCounts$counts,

K = 5, L = 10, verbose = FALSE)

Here is a comparison between the true cluster labels and the estimated cluster labels, which
can be found within the z and y objects.

4

Analysis of single-cell genomic data with celda

table(clusters(celdaModel)$z, simCounts$z)

##

1 2 3 4 5

1 42 0 0 0 0

2 0 44 0 0 0

3 0 0 40 0 0

4 0 0 0 47 0

5 0 0 0 0 34

table(clusters(celdaModel)$y, simCounts$y)

##

1 2 3 4 5 6 7 8 9 10

1 1 39 0 0 0 0 0 0 0 0

2 22 0 0 0 0 0 0 0 0 0

3 0 0 17 0 0 0 0 0 0 0

4 0 0 0 15 0 0 0 0 0 0

5 0 0 0 0 21 0 0 0 0 0

6 0 0 0 0 0 22 0 0 0 0

7 0 0 0 0 0 0 18 0 0 2

8 0 0 0 0 0 0 0 12 0 0

9 0 0 0 0 0 0 0 0 4 0

10 0 0 0 0 0 0 1 0 0 26

6 Matrix factorization

celda can also be thought of as performing matrix factorization of the original counts matrix
into smaller matrices that describe the contribution of each feature in each module, each
module in each cell population, or each cell population in each sample. Each of these following
matrices can be viewed as raw counts, proportions, or posterior probabilities.

factorized <- factorizeMatrix(counts = simCounts$counts, celdaMod = celdaModel)

names(factorized)

[1] "counts" "proportions" "posterior"

The cell object contains each feature module’s contribution to each cell subpopulation. Here,
there are 10 feature modules to 207 cells.

dim(factorized$proportions$cell)

[1] 10 207

head(factorized$proportions$cell[, seq(3)], 5)

Cell_1 Cell_2 Cell_3

L1 0.01709402 0.010452962 0.01117318

L2 0.04957265 0.019163763 0.06331471

L3 0.03076923 0.193379791 0.04841713

L4 0.04957265 0.182926829 0.08193669

L5 0.01367521 0.003484321 0.01675978

The cellPopulation contains each feature module’s contribution to each of the cell states.
Since K and L were set to be 5 and 10, there are 5 cell subpopulations to 10 feature modules.

5

Analysis of single-cell genomic data with celda

cellPop <- factorized$proportions$cellPopulation

dim(cellPop)

[1] 10 5

head(cellPop, 5)

K1 K2 K3 K4 K5

L1 0.16530605 0.020828416 0.10820256 0.01485501 0.03701279

L2 0.11236265 0.018261742 0.05533085 0.04767835 0.03708982

L3 0.37986979 0.200820156 0.01931726 0.03993951 0.07837775

L4 0.17846440 0.171554166 0.02556221 0.06609144 0.02391773

L5 0.03107024 0.008703092 0.20944831 0.02232699 0.22758435

The module object contains each feature’s contribution to the module it belongs.

dim(factorized$proportions$module)

[1] 200 10

head(factorized$proportions$module, 5)

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Gene_1 0 0 0 0.01458423 0 0.000000000 0 0.000000000 0 0.0000000000

Gene_2 0 0 0 0.00000000 0 0.000000000 0 0.000000000 0 0.0020778781

Gene_3 0 0 0 0.00000000 0 0.005295658 0 0.000000000 0 0.0000000000

Gene_4 0 0 0 0.00000000 0 0.000000000 0 0.000000000 0 0.0005862352

Gene_5 0 0 0 0.00000000 0 0.000000000 0 0.008591603 0 0.0000000000

The top features in a feature module can be selected using the topRank function on the
module matrix:

topGenes <- topRank(matrix = factorized$proportions$module,

n = 10, threshold = NULL)

topGenes$names$L1

[1] "Gene_175" "Gene_20" "Gene_180" "Gene_132" "Gene_112" "Gene_134"

[7] "Gene_10" "Gene_191" "Gene_32" "Gene_90"

7 Visualization

7.1 Creating an expression heatmap using the celda model

The clustering results can be viewed with a heatmap of the normalized counts using the
function celdaHeatmap. The top nfeatures in each module will be selected according to the
factorized module probability matrix.

celdaHeatmap(counts = simCounts$counts, celdaMod = celdaModel, nfeatures = 10)

6

Analysis of single-cell genomic data with celda

7.2 Plotting cell populations with tSNE

celda contains its own wrapper function for tSNE, celdaTsne, which can be used to embed
cells into 2-dimensions. The output can be used in the downstream plotting functions plotDim
ReduceCluster, plotDimReduceModule, and plotDimReduceFeature to show cell population
clusters, module probabilities, and expression of a individual features, respectively.

tsne <- celdaTsne(counts = simCounts$counts, celdaMod = celdaModel)

plotDimReduceCluster(dim1 = tsne[, 1],

dim2 = tsne[, 2],

cluster = clusters(celdaModel)$z)

7

Analysis of single-cell genomic data with celda

plotDimReduceModule(dim1 = tsne[, 1],

dim2 = tsne[, 2],

celdaMod = celdaModel,

counts = simCounts$counts,

rescale = TRUE)

8

Analysis of single-cell genomic data with celda

plotDimReduceFeature(dim1 = tsne[, 1],

dim2 = tsne[, 2],

counts = simCounts$counts,

normalize = TRUE,

features = "Gene_1")

9

Analysis of single-cell genomic data with celda

7.3 Displaying relationships between modules and cell popula-
tions

The relationships between feature modules and cell populations can be visualized with
celdaProbabilityMap. The absolute probabilities of each feature module in each cellular
subpopulation is shown on the left. The normalized and z-scored expression of each module
in each cell population is shown on the right.

celdaProbabilityMap(counts = simCounts$counts, celdaMod = celdaModel)

10

Analysis of single-cell genomic data with celda

7.4 Examining co-expression with module heatmaps

moduleHeatmap creates a heatmap using only the features from a specific feature module.
Cells are ordered from those with the lowest probability of the module to the highest. If more
than one module is used, then cells will be ordered by the probabilities of the first module.

moduleHeatmap(counts = simCounts$counts, celdaMod = celdaModel,

featureModule = 1, topCells = 100)

11

Analysis of single-cell genomic data with celda

While celdaHeatmap will plot a heatmap directly with a celda object, the plotHeatmap function
is a more general heatmap function which takes a normalized expression matrix as the input.
Simple normalization of the counts matrix can be performed with the normalizeCounts

function. For instance, if users want to display specific modules and cell populations, the
featureIx and cells.ix parameters can be used to select rows and columns out of the
matrix.

genes <- c(topGenes$names$L1, topGenes$names$L10)

geneIx <- which(rownames(simCounts$counts) %in% genes)

normCounts <- normalizeCounts(counts = simCounts$counts, scaleFun = scale)

plotHeatmap(counts = normCounts,

z = clusters(celdaModel)$z,

y = clusters(celdaModel)$y,

featureIx = geneIx,

showNamesFeature = TRUE)

12

Analysis of single-cell genomic data with celda

8 Differential Expression Analysis

celda employs the MAST package (McDavid A, 2018) for differential expression analysis
of single-cell data. The differentialExpression function can determine features that are
differentially expressed in one cell subpopulation versus all other subpopulations, between two
individual cell subpopulations, or between different groups of cell populations.

If you wish to compare one cell subpopulation compared to all others, leave c2 as NULL.

diffexpClust1 <- differentialExpression(counts = simCounts$counts,

celdaMod = celdaModel,

c1 = 1,

c2 = NULL)

head(diffexpClust1, 5)

Gene Pvalue Log2_FC FDR

1: Gene_192 3.205425e-41 -7.800409 3.452950e-39

2: Gene_72 3.452950e-41 -7.001386 3.452950e-39

3: Gene_113 6.275161e-38 3.084507 4.183441e-36

4: Gene_92 1.313045e-36 3.271233 6.565227e-35

13

https://bioconductor.org/packages/release/bioc/html/MAST.html

Analysis of single-cell genomic data with celda

5: Gene_27 6.584171e-36 2.111428 2.633668e-34

If you wish to compare two cell subpopulations, use both c1 and c2 parameters.

diffexpClust1vs2 <- differentialExpression(

counts = simCounts$counts,

celdaMod = celdaModel,

c1 = 1,

c2 = 2)

diffexpClust1vs2 <- diffexpClust1vs2[diffexpClust1vs2$FDR < 0.05 &

abs(diffexpClust1vs2$Log2_FC) > 2,]

head(diffexpClust1vs2, 5)

Gene Pvalue Log2_FC FDR

1: Gene_72 4.658824e-56 -8.431850 9.317649e-54

2: Gene_192 8.689595e-50 -8.965264 8.689595e-48

3: Gene_186 1.219911e-45 -9.016481 8.132743e-44

4: Gene_20 2.396962e-26 3.283106 1.198481e-24

5: Gene_180 2.422467e-25 4.249271 9.689866e-24

The differentially expressed genes can be visualized further with a heatmap:

diffexpGeneIx <- which(rownames(simCounts$counts) %in% diffexpClust1vs2$Gene)

normCounts <- normalizeCounts(counts = simCounts$counts, scaleFun = scale)

plotHeatmap(counts = normCounts[, clusters(celdaModel)$z %in% c(1, 2)],

clusterCell = TRUE,

z = clusters(celdaModel)$z[clusters(celdaModel)$z %in% c(1, 2)],

y = clusters(celdaModel)$y,

featureIx = diffexpGeneIx,

showNamesFeature = TRUE)

14

Analysis of single-cell genomic data with celda

9 Identifying the optimal number of cell subpopula-
tions and feature modules

In the previous example, the best K (the number of cell clusters) and L (the number of
feature modules) was already known. However, the optimal K and L for each new dataset
will likely not be known beforehand and multiple choices of K and L may need to be tried
and compared. celda offers two sets of functions to determine the optimum K and L,
recursiveSplitModule/recursiveSplitCell, and celdaGridSearch.

9.1 recursiveSplitModule/recursiveSplitCell

Functions recursiveSplitModule and recursiveSplitCell offer a fast method to generate
a celda model with optimum K and L.

First, recursiveSplitModule is used to determine the optimal L. recursiveSplitModule first
splits features into however many modules are specified in initialL. The module labels are
then recursively split in a way that would generate the highest log likelihood, all the way up
to maxL.

moduleSplit <- recursiveSplitModule(counts = simCounts$counts,

initialL = 2, maxL = 15)

Perplexity is a statistical measure of how well a probability model can predict new data. Lower
perplexity indicates a better model. The perplexity of each model can be visualized with
plotGridSearchPerplexity. In general, visual inspection of the plot can be used to select
the optimal number of modules (L) or cell populations (K) by identifying the “elbow” - where
the rate of decrease in the perplexity starts to drop off.

plotGridSearchPerplexity(celdaList = moduleSplit)

In this example, the perplexity for L stops decreasing at L = 10, thus L = 10 would be a good
choice.

15

Analysis of single-cell genomic data with celda

Once you have identified the optimal L (in this case, L is selected to be 10), the module
labels are used for intialization in recursiveSplitCell. Similarly to recursiveSplitModule,
cells are initially split into a small number of subpopulations, and the subpopulations are
recursively split up by log-likelihood.

moduleSplitSelect <- subsetCeldaList(moduleSplit, params = list(L = 10))

cellSplit <- recursiveSplitCell(counts = simCounts$counts,

initialK = 3,

maxK = 12,

yInit = clusters(moduleSplitSelect)$y)

plotGridSearchPerplexity(celdaList = cellSplit)

In this plot, the perplexity for K stops decreasing at K = 5, with a final K/L combination of
K = 5, L = 10. Generally, this method can be used to pick a reasonable L and a potential
range of K. However, manual review of specific selections of K is often be required to ensure
results are biologically coherent.

Once users have chosen the K/L parameters for further analysis, the subsetCeldaList function
can be used to subset the celda_list object to a single model.

celdaModel <- subsetCeldaList(celdaList = cellSplit,

params = list(K = 5, L = 10))

9.2 celdaGridSearch

celda is able to run multiple combinations of K and L with multiple chains in parallel via the
celdaGridSearch function. Setting verbose to TRUE will print the output of each model to a
text file.

16

Analysis of single-cell genomic data with celda

The resamplePerplexity function “perturbs” the original counts matrix by resampling the
counts of each cell according to its normalized probability distribution. Perplexity is calculated
on the resampled matrix and the procedure is repeated resample times. These results can
be visualized with plotGridSearchPerplexity. The major goal is to pick the lowest K and L
combination with relatively good perplexity. In general, visual inspection of the plot can be
used to select the number of modules (L) or cell populations (K) where the rate of decrease
in the perplexity starts to drop off.

cgs <- celdaGridSearch(simCounts$counts,

paramsTest = list(K = seq(4, 6), L = seq(9, 11)),

cores = 1,

model = "celda_CG",

nchains = 2,

maxIter = 100,

verbose = FALSE,

bestOnly = TRUE)

bestOnly = TRUE indicates that only the chain with the best log likelihood will be returned
for each K/L combination.

resamplePerplexity calculates the perplexity of each model’s cluster assignments, as well
as resamplings of that count matrix. The result of this function can be visualized with
plotGridSearchPerplexity for determination of the optimal K/L values.

cgs <- resamplePerplexity(counts = simCounts$counts,

celdaList = cgs, resample = 5)

plotGridSearchPerplexity(celdaList = cgs)

17

Analysis of single-cell genomic data with celda

In this example, the perplexity for L stops decreasing at L = 10 for the majority of K values.
For the line corresponding to L = 10, the perplexity stops decreasing at K = 5. Thus L = 10
and K = 5 would be a good choice. Again, manual review of specific selections of K is often
be required to ensure results are biologically coherent.

Once users have chosen the K/L parameters for further analysis, the subsetCeldaList function
can be used to subset the celda_list object to a single model.

celdaModel <- subsetCeldaList(celdaList = cgs, params = list(K = 5, L = 10))

If the “bestOnly” parameter is set to FALSE in the celdaGridSearch, then the selectBest

Model function can be used to select the chains with the lowest log likelihoods within each
combination of parameters. Alternatively, users can use select a specific chain by specifying
the index within the subsetCeldaList function.

cgs <- celdaGridSearch(simCounts$counts,

paramsTest = list(K = seq(4, 6), L = seq(9, 11)),

cores = 1,

model = "celda_CG",

nchains = 2,

maxIter = 100,

verbose = FALSE,

bestOnly = FALSE)

18

Analysis of single-cell genomic data with celda

cgs <- resamplePerplexity(counts = simCounts$counts,

celdaList = cgs,

resample = 2)

cgsK5L10 <- subsetCeldaList(celdaList = cgs, params = list(K = 5, L = 10))

celdaModel1 <- selectBestModel(celdaList = cgsK5L10)

10 Miscellaneous utility functions

celda also contains several utility functions for the users’ convenience.

10.1 featureModuleLookup

featureModuleLookup can be used to look up the module a specific feature was clustered to.

featureModuleLookup(counts = simCounts$counts, celdaMod = celdaModel,

feature = c("Gene_99"))

$Gene_99

[1] 3

10.2 recodeClusterZ, recodeClusterY

recodeClusterZ and recodeClusterY allows the user to recode the cell and feature cluster
labels, respectively.

celdaModelZRecoded <- recodeClusterZ(celdaMod = celdaModel,

from = c(1, 2, 3, 4, 5), to = c(2, 1, 3, 4, 5))

The model prior to reordering cell labels compared to after reordering cell labels:

table(clusters(celdaModel)$z, clusters(celdaModelZRecoded)$z)

##

1 2 3 4 5

1 0 44 0 0 0

2 42 0 0 0 0

3 0 0 40 0 0

4 0 0 0 47 0

5 0 0 0 0 34

19

Analysis of single-cell genomic data with celda

11 Session Information

sessionInfo()

R version 4.0.0 (2020-04-24)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 18.04.4 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.11-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.11-bioc/R/lib/libRlapack.so

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] celda_1.4.5 BiocStyle_2.16.0

##

loaded via a namespace (and not attached):

[1] ggrepel_0.8.2 Rcpp_1.0.4.6

[3] lattice_0.20-41 prettyunits_1.1.1

[5] assertthat_0.2.1 digest_0.6.25

[7] foreach_1.5.0 SingleCellExperiment_1.10.1

[9] R6_2.4.1 GenomeInfoDb_1.24.0

[11] plyr_1.8.6 stats4_4.0.0

[13] evaluate_0.14 httr_1.4.1

[15] ggplot2_3.3.0 pillar_1.4.4

[17] progress_1.2.2 zlibbioc_1.34.0

[19] rlang_0.4.6 data.table_1.12.8

[21] magick_2.3 S4Vectors_0.26.0

[23] combinat_0.0-8 Matrix_1.2-18

[25] rmarkdown_2.1 labeling_0.3

[27] Rtsne_0.15 stringr_1.4.0

[29] RcppEigen_0.3.3.7.0 RCurl_1.98-1.2

[31] munsell_0.5.0 uwot_0.1.8

[33] DelayedArray_0.14.0 compiler_4.0.0

[35] xfun_0.13 pkgconfig_2.0.3

[37] BiocGenerics_0.34.0 htmltools_0.4.0

[39] tidyselect_1.0.0 SummarizedExperiment_1.18.1

[41] tibble_3.0.1 gridExtra_2.3

[43] GenomeInfoDbData_1.2.3 enrichR_2.1

[45] bookdown_0.18 IRanges_2.22.1

[47] codetools_0.2-16 matrixStats_0.56.0

20

Analysis of single-cell genomic data with celda

[49] withr_2.2.0 MCMCprecision_0.4.0

[51] crayon_1.3.4 dplyr_0.8.5

[53] bitops_1.0-6 MAST_1.14.0

[55] grid_4.0.0 gtable_0.3.0

[57] lifecycle_0.2.0 magrittr_1.5

[59] scales_1.1.0 stringi_1.4.6

[61] farver_2.0.3 XVector_0.28.0

[63] reshape2_1.4.4 doParallel_1.0.15

[65] ellipsis_0.3.0 vctrs_0.2.4

[67] rjson_0.2.20 RColorBrewer_1.1-2

[69] iterators_1.0.12 tools_4.0.0

[71] Biobase_2.48.0 glue_1.4.0

[73] purrr_0.3.4 hms_0.5.3

[75] abind_1.4-5 parallel_4.0.0

[77] yaml_2.2.1 colorspace_1.4-1

[79] BiocManager_1.30.10 GenomicRanges_1.40.0

[81] knitr_1.28

21

	1 Introduction
	2 Installation
	3 Reproducibility note
	4 Generation of a simulated single cell dataset
	5 Performing bi-clustering with celda
	6 Matrix factorization
	7 Visualization
	7.1 Creating an expression heatmap using the celda model
	7.2 Plotting cell populations with tSNE
	7.3 Displaying relationships between modules and cell populations
	7.4 Examining co-expression with module heatmaps

	8 Differential Expression Analysis
	9 Identifying the optimal number of cell subpopulations and feature modules
	9.1 recursiveSplitModule/recursiveSplitCell
	9.2 celdaGridSearch

	10 Miscellaneous utility functions
	10.1 featureModuleLookup
	10.2 recodeClusterZ, recodeClusterY

	11 Session Information

