
Seamless navigation through combined re-
sults of set- & network-based enrichment
analysis

Ludwig Geistlinger 1

1School of Public Health, City University of New York

October 30, 2018

Abstract

The EnrichmentBrowser package implements an analysis pipeline for high-throughput gene
expression data as measured with microarrays and RNA-seq. In a workflow-like manner, the
package brings together a selection of established Bioconductor packages for gene expression
data analysis. It integrates a wide range of gene set and network enrichment analysis methods
and facilitates combination and exploration of results across methods.

Package

EnrichmentBrowser 2.12.0
Report issues on https://github.com/lgeistlinger/EnrichmentBrowser/issues

http://bioconductor.org/packages/EnrichmentBrowser
https://github.com/lgeistlinger/EnrichmentBrowser/issues

EnrichmentBrowser

Contents

1 Introduction . 3

2 Reading expression data from file 3

3 Types of expression data . 4

3.1 Microarray data . 4

3.2 RNA-seq data . 6

4 Normalization . 6

5 Differential expression . 8

6 ID mapping . 11

7 Enrichment analysis . 12

7.1 Set-based enrichment analysis 12

7.2 Network-based enrichment analysis 15

8 Combining results . 19

9 Putting it all together . 20

10 Advanced: configuration parameters 20

11 For non-R users: command line invocation 20

A A primer on terminology and statistical theory 21

A.1 Where does it all come from? 21

A.2 Gene sets, pathways & regulatory networks 22

A.3 Resources . 22

A.4 Gene set analysis vs. gene set enrichment analysis 22

A.5 Underlying null: competitive vs. self-contained 23

A.6 Generations: ora, fcs & topology-based 23

B Frequently asked questions . 24

2

EnrichmentBrowser

1 Introduction

The EnrichmentBrowser package implements essential functionality for the enrichment anal-
ysis of gene expression data. The analysis combines the advantages of set-based and network-
based enrichment analysis to derive high-confidence gene sets and biological pathways that
are differentially regulated in the expression data under investigation. Besides, the package
facilitates the visualization and exploration of such sets and pathways.
The following instructions will guide you through an end-to-end expression data analysis
workflow including:

1. Preparing the data
2. Preprocessing of the data
3. Differential expression (DE) analysis
4. Defining gene sets of interest
5. Executing individual enrichment methods
6. Combining the results of different methods
7. Visualize and explore the results

All of these steps are modular, i.e. each step can be executed individually and fine-tuned with
several parameters. In case you are interested in a particular step, you can directly move on
to the respective section. For example, if you have differential expression already calculated
for each gene, and your are now interested whether certain gene functions are enriched for
differential expression, section Set-based enrichment analysis would be the one you should
go for. The last section Putting it all together also demonstrates how to wrap the whole
workflow into a single function, making use of suitably chosen defaults.

2 Reading expression data from file

Typically, the expression data is not already available in R but rather has to be read in from
file. This can be done using the function readSE, which reads the expression data (exprs)
along with the phenotype data (colData) and feature data (rowData) into a SummarizedEx-
periment.
library(EnrichmentBrowser)

data.dir <- system.file("extdata", package="EnrichmentBrowser")

exprs.file <- file.path(data.dir, "exprs.tab")

cdat.file <- file.path(data.dir, "colData.tab")

rdat.file <- file.path(data.dir, "rowData.tab")

se <- readSE(exprs.file, cdat.file, rdat.file)

The man pages provide details on file format and the SummarizedExperiment data structure.
?readSE

?SummarizedExperiment

3

http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/SummarizedExperiment
http://bioconductor.org/packages/SummarizedExperiment

EnrichmentBrowser

Note: Previous versions of the EnrichmentBrowser used the ExpressionSet data structure.
The migration to SummarizedExperiment in the current release of the EnrichmentBrowser is
done to reflect recent developments in Bioconductor , which discourage use of ExpressionSet
in favor of SummarizedExperiment. Major reasons are the compatibility of SummarizedEx-
periment with operations on genomic regions as well as efficient dealing with big data.
To enable a smooth transition, all functions of the EnrichmentBrowser are still accepting
also an ExpressionSet as input, but are consistently returning a SummarizedExperiment as
output.
Furthermore, users can always coerce from SummarizedExperiment to ExpressionSet via
eset <- as(se, "ExpressionSet")

and vice versa
se <- as(eset, "SummarizedExperiment")

3 Types of expression data

The two major data types processed by the EnrichmentBrowser are microarray (intensity
measurements) and RNA-seq (read counts) data.
Although RNA-seq has become the de facto standard for transcriptomic profiling, it is impor-
tant to know that many methods for differential expression and gene set enrichment analysis
have been originally developed for microarray data.
However, differences in data distribution assumptions (microarray: quasi-normal, RNA-seq:
negative binomial) made adaptations in differential expression analysis and, to some extent,
also in gene set enrichment analysis necessary.
Thus, we consider two example datasets – a microarray and a RNA-seq dataset, and discuss
similarities and differences of the respective analysis steps.

3.1 Microarray data

To demonstrate the functionality of the package for microarray data, we consider expression
measurements of patients with acute lymphoblastic leukemia [1]. A frequent chromosomal
defect found among these patients is a translocation, in which parts of chromosome 9 and
22 swap places. This results in the oncogenic fusion gene BCR/ABL created by positioning
the ABL1 gene on chromosome 9 to a part of the BCR gene on chromosome 22.
We load the ALL dataset
library(ALL)

data(ALL)

and select B-cell ALL patients with and without the BCR/ABL fusion as described previously
[2].
ind.bs <- grep("^B", ALL$BT)

ind.mut <- which(ALL$mol.biol %in% c("BCR/ABL", "NEG"))

4

http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/ALL

EnrichmentBrowser

sset <- intersect(ind.bs, ind.mut)

all.eset <- ALL[, sset]

We can now access the expression values, which are intensity measurements on a log-scale
for 12,625 probes (rows) across 79 patients (columns).
dim(all.eset)

Features Samples

12625 79

exprs(all.eset)[1:4,1:4]

01005 01010 03002 04007

1000_at 7.597323 7.479445 7.567593 7.905312

1001_at 5.046194 4.932537 4.799294 4.844565

1002_f_at 3.900466 4.208155 3.886169 3.416923

1003_s_at 5.903856 6.169024 5.860459 5.687997

As we often have more than one probe per gene, we summarize gene expression values as the
average of the corresponding probe values.
allSE <- probe2gene(all.eset)

Loading required package: hgu95av2.db

Loading required package: AnnotationDbi

Loading required package: org.Hs.eg.db

##

##

Encountered 663 from.IDs with >1 corresponding to.ID

(the first to.ID was chosen for each of them)

head(rownames(allSE))

[1] "5595" "7075" "1557" "643" "1843" "4319"

Note, that the mapping from probe to gene is done automatically as long as as you have the
corresponding annotation package, here the hgu95av2.db package, installed. Otherwise, the
mapping can be defined in the rowData slot.
rowData(se, use.names=TRUE)

DataFrame with 767 rows and 2 columns

PROBEID ENTREZID

<character> <character>

1000_at 1000_at 5595

1010_at 1010_at 5600

1011_s_at 1011_s_at 7531

1013_at 1013_at 4090

1018_at 1018_at 7480

...

974_at 974_at 9020

976_s_at 976_s_at 5594

5

http://bioconductor.org/packages/hgu95av2.db

EnrichmentBrowser

983_at 983_at 6300

993_at 993_at 7297

996_at 996_at 2246

3.2 RNA-seq data

To demonstrate the functionality of the package for RNA-seq data, we consider transcriptome
profiles of four primary human airway smooth muscle cell lines in two conditions: control and
treatment with dexamethasone [3].
We load the airway dataset
library(airway)

data(airway)

For further analysis, we remove genes with very low read counts and measurements that are
not mapped to an ENSEMBL gene ID.
airSE <- airway[grep("^ENSG", rownames(airway)),]

airSE <- airSE[rowMeans(assay(airSE)) > 10,]

dim(airSE)

[1] 16055 8

assay(airSE)[1:4,1:4]

SRR1039508 SRR1039509 SRR1039512 SRR1039513

ENSG00000000003 679 448 873 408

ENSG00000000419 467 515 621 365

ENSG00000000457 260 211 263 164

ENSG00000000460 60 55 40 35

4 Normalization

Normalization of high-throughput expression data is essential to make results within and
between experiments comparable. Microarray (intensity measurements) and RNA-seq (read
counts) data typically show distinct features that need to be normalized for. The function
normalize wraps commonly used functionality from limma for microarray normalization and
from EDASeq for RNA-seq normalization. For specific needs that deviate from these standard
normalizations, the user should always refer to more specific functions/packages.
Microarray data is expected to be single-channel. For two-color arrays, it is expected that
normalization within arrays has been already carried out, e.g. using normalizeWithinArrays

from limma.
A default quantile normalization based on normalizeBetweenArrays from limma can be car-
ried out via
before.norm <- assay(allSE)

allSE <- normalize(allSE, norm.method="quantile")

after.norm <- assay(allSE)

6

http://bioconductor.org/packages/airway
http://bioconductor.org/packages/limma
http://bioconductor.org/packages/EDASeq
http://bioconductor.org/packages/limma
http://bioconductor.org/packages/limma

EnrichmentBrowser

par(mfrow=c(1,2))

boxplot(before.norm)

boxplot(after.norm)

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●
●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●
●
●●

●

●

●●

●

●

●

●

●
●●

●
●●

●
●

●
●

●
●

●
●

●

●

●
●●

●

●

●

●
●●
●

●

●

●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●

●

●

●●

●

●

●●
●

●

●
●
●
●
●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●
●
●●

●

●
●●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●
●
●

●

●
●

●●●

●●

●
●

●

●

●

●●
●
●

●
●

●
●
●●●

●

●

●

●

●

●
●●

●

●

●
●
●

●●
●●
●
●

●
●

●

●

●
●

●●●
●

●

●
●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●●

●●
●●
●●

●

●

●

●

●

●●●●

●●

●

●

●

●●
●

●

●

●

●●●

●●

●

●●●
●
●

●
●

●

●

●●

●

●●

●

●

●
●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●●

●

●
●●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●●
●●
●

●●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●
●
●
●
●

●

●●

●

●

●●

●

●●
●

●
●
●

●
●●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●
●●
●●
●

●

●
●●

●●●

●
●

●
●
●●

●

●

●

●

●

●

●●●●

●

●●
●

●

●
●
●

●

●

●
●●

●

●

●
●

●
●
●

●

●●
●
●

●●
●

●●●

●

●
●
●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●
●

●

●

●
●
●

●

●

●●

●

●
●

●●

●●

●

●

●●
●
●
●
●●

●
●●

●

●

●
●

●●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●●

●
●

●

●

●
●●
●

●

●

●

●
●
●

●●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●●

●

●

●
●
●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●
●
●●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●●

●
●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●●
●

●

●
●

●

●
●●

●
●

●
●

●

●

●
●
●

●
●

●
●

●

●
●

●●
●

●●

●●

●

●
●
●
●
●●

●

●
●

●
●

●

●

●

●

●
●
●
●●

●

●

●

●
●

●
●●●
●●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●
●
●

●●

●●
●
●

●

●●●
●●●

●

●
●
●●

●

●
●

●

●

●

●
●
●●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●
●
●
●

●
●●●
●

●

●

●

●
●

●

●●
●●

●
●

●
●

●

●
●

●
●

●
●
●
●

●●
●
●

●

●
●
●●

●
●
●
●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●
●

●

●●

●●

●
●

●●

●

●●

●

●

●

●
●
●

●

●
●

●●
●

●

●●
●

●●
●

●

●

●

●
●
●●

●

●

●

●

●●
●

●

●●●●

●

●

●

●
●
●

●
●

●

●●
●●

●

●●
●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●●●

●●
●
●
●

●

●

●

●

●●
●

●

●

●

●
●
●●
●●●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●

●
●

●
●

●●

●

●●

●
●●

●

●

●

●
●
●

●

●●●
●

●

●

●●
●●

●
●●
●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●
●●
●

●
●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●●●
●●

●

●

●
●
●

●

●

●
●●

●
●

●●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●
●
●

●●
●●

●

●

●
●

●

●

●

●

●●

●

●
●●●

●●

●

●

●

●

●

●
●

●●

●

●
●

●●
●●●

●●
●

●
●

●

●
●
●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●●

●

●

●●

●

●

●●●●

●●
●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●●
●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●●

●

●

●

●
●

●
●
●

●
●

●●

●

●

●

●
●

●
●●●●

●

●
●

●

●●●●

●

●

●

●
●

●

●

●

●
●●●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●●

●

●
●●

●

●●

●

●

●
●

●●

●●
●

●

●

●

●
●

●

●

●●
●●

●●

●●

●
●

●

●
●●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●●

●●

●

●
●●
●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●●
●

●
●

●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●
●

●
●
●●●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●
●●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

●●

●
●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●
●

●
●●
●

●●

●

●

●●●

●
●
●
●

●●

●●●●

●
●

●

●

●

●

●
●●●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●
●●

●
●●

●●

●
●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●
●

●
●●
●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●
●
●

●

●●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●●

●

●●
●
●●●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●
●

●●

●

●
●●

●

●

●

●●●●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●●

●●
●
●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●●●●

●
●

●

●
●

●●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●
●●
●
●

●

●●

●

●

●

●

●

●
●●

●
●
●
●

●

●

●

●

●

●
●
●●

●
●

●
●

●
●

●
●●

●

●

●●

●

●

●●●

●

●●
●

●

●

●
●

●

●

●

●
●

●●●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●●●

●

●

●

●●●

●

●

●
●

●

●
●
●
●

●

●

●

●

●
●

●

●
●●●

●●

●

●

●

●●

●

●
●●

●
●
●●
●●

●
●

●●

●

●

●

●
●
●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●●
●

●
●
●

●

●

●●●

●

●
●

●●

●

●

●

●●

●
●

●

●
●●

●●

●
●
●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●●●

●

●

●

●

●

●
●●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●
●

●

●

●

●
●

●
●
●●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●
●

●

●

●

●

●
●

●●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●

●

●

●●

●
●

●

●
●

●●

●

●

●

●
●

●●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●●●
●

●

●

●
●●

●

●●
●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●●
●●

●

●

●

●

●●

●

●
●●

●●
●
●
●

●

●
●

●

●
●
●

●

●●

●

●

●●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●
●

●●
●

●

●

●
●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●

●
●●

●●

●●
●

●
●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●
●

●
●

●●
●

●

●●●
●

●

●

●●

●
●●

●
●
●

●

●

●

●●●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●
●●

●

●

●

●

●
●●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●
●●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●
●●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●●●

●

●

●●
●●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●●●●●
●
●
●

●

●●

●
●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●
●
●

●

●

●

●●●●

●

●
●●

●●

●
●

●●

●

●

●
●

●

●●
●
●

●

●●
●

●

●

●

●

●
●
●
●
●
●

●

●●

●●

●

●●

●
●●

●
●

●●

●

●

●

●

●
●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●
●

●●

●

●

●

●●●

●

●

●●●

●

●

●●
●

●●●

●●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●●

●
●●

●●
●
●●

●●

●

●

●

●●
●●●

●
●

●
●

●

●
●
●

●

●
●
●

●

●

●●

●●
●

●

●
●●
●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●
●

●

●●

●●

●
●
●
●
●
●
●

●

●

●

●
●

●

●●

●

●

●●

●●●
●●
●

●

●

●●

●

●●●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●
●
●
●

●

●

●
●

●

●

●●●
●
●

●
●

●

●

●
●●

●
●●

●
●
●●

●●

●
●●

●●
●
●
●

●

●●

●

●

●
●

●

●

●

●

●●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●●

●●

●

●●

●
●
●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●●●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●
●●

●
●

●●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●●

●●
●
●

●●●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●●

●●
●

●
●
●
●●●

●

●

●●

●

●

●

●
●●

●

●

●

●
●
●●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●●●

●●

●●

●

●
●
●

●

●

●●

●

●
●

●●

●●
●

●●

●
●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●
●●

●

●

●●
●

●

●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●
●

●

●●

●●●●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●
●
●●

●

●

●
●

●

●

●●
●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●●

●

●

●●
●
●

●

●

●

●

●
●

●
●●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●
●●

●

●

●●

●●

●

●

●

●
●
●
●

●●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●●

●

●

●●

●
●●

●●●
●●
●
●
●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●●
●
●
●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●●
●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●
●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●●

●

●

●●
●

●

●

●
●

●
●

●
●●

●

●●●
●
●
●●

●
●

●
●●

●

●

●

●
●

●●

●

●

●
●
●

●
●
●

●
●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●●●

●
●●
●

●●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●●

●●

●
●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●
●●
●

●
●
●

●●
●
●
●●●

●●

●
●●

●

●
●
●

●

●●

●

●
●●
●

●●

●

●

●

●

●
●
●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●●
●

●●

●

●

●

●

●

●
●
●●

●

●

●●
●

●●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●
●
●
●

●●

●

●
●●
●
●

●●●●

●

●
●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●
●
●

●
●

●

●

●●
●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●
●

●
●●●●

●
●

●

●

●
●

●

●
●●
●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●●
●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●
●

●
●●

●
●

●
●

●●

●

●

●
●

●
●
●
●

●

●

●
●

●

●

●

●

●

●
●

●
●●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●
●

●●

●

●

●

●●
●

●

●

●

●●

●
●●

●

●

●

●

●

●
●
●

●
●

●
●

●

●●
●

●

●●

●
●
●

●

●

●

●

●●

●●

●
●

●

●
●●
●

●●

●

●

●

●

●●

●
●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●
●
●●

●

●

●
●

●●●●

●●

●

●

●

●●
●

●
●

●

●

●

●

●
●●

●
●

●

●

●●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●
●

●

●●●●

●

●
●

●

●
●●

●
●

●●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●●●

●

●
●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●●

●●

●

●

●
●●●

●

●

●
●●●
●
●●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●
●
●
●
●

●

●●

●

●●●

●●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●
●
●●

●
●

●

●

●

●
●
●
●

●

●

●

●●

●●●

●

●

●
●
●

●

●

●●
●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●
●●

●

●
●
●

●●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●●●●

●

●

●●

●●

●

●

●

●●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●●

●

●

●●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●
●●

●

●

●●●

●●●●

●
●
●●
●
●

●●
●

●
●

●

●●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●●
●

●

●

●
●
●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●●

●

●

●

●
●●

●●

●●
●●
●
●

●

●●

●

●

●

●
●

●

●●●

●

●
●

●●
●
●

●●

●

●

●

●

●
●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●
●
●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●●
●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●●

●

●

●●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●●

●●

●

●

●
●●●●
●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●
●

●●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●
●
●●

●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●
●●

●●
●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●
●
●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●
●

●●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●
●
●

●
●

●

●●

●

●

●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●●

●●

●

●

●

●
●●
●

●

●

●

●
●

●

●
●

●

●
●

●●

●●

●
●

●●

●

●

●

●

●
●●

●

●

●●

●
●
●

●
●

●●

●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●●●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●
●

●●●

●●●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●●
●
●
●
●

●

●

●

●

●●

●
●●
●

●
●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●●●

●

●●●
●

●

●

●

●●

●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●
●
●

●●
●●
●

●

●

●
●
●

●

●
●
●

●●

●

●

●

●

●

●
●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●●

●

●

●
●●
●

●

●

●
●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●●
●●

●

●
●
●

●
●

●
●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●
●●●
●●●●
●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●
●●

●

●

●●
●●

●

●●

●
●●●

●●

●

●●

●

●

●

●
●

●

●●
●
●●

●

●
●
●●
●
●
●●

●

●

●

●

●

●

●
●●

●●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●
●
●

●

●

●●

●●●

●●●
●

●

●●

●

●

●
●
●●
●

●

●

●

●
●●
●●

●
●

●

●

●●
●
●●
●●
●●●

●

●

●
●
●

●●
●

●

●●●●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●
●●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●●●

●

●

●●

●
●

●
●

●

●
●

●
●
●●

●

●

●

●

●

●
●

●

●●
●●

●

●
●
●

●

●
●●
●●

●●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●●

●
●

●●

●

●●

●
●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●
●●
●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●●

●
●
●

●●
●

●

●

●
●
●●
●●●

●
●
●

●

●

●
●

●

●

●

●

●●●●●

●

●
●
●●

●

●

●
●●●
●

01005 08024 15005 24017 28006 28043 43012 68003

2
4

6
8

10
12

14

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●●
●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●●

●

●●
●

●

●
●
●
●
●

●●

●
●

●
●

●

●
●
●

●
●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●●

●
●

●
●

●

●

●
●

●●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●●●●

●
●

●

●

●

●●
●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●●
●

●

●

●●

●

●
●

●

●

●
●●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●
●●●

●

●
●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●
●

●●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●●

●

●●
●●

●

●
●

●●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●●
●

●

●

●
●
●

●

●

●●

●

●

●●

●●

●

●

●●
●●

●
●●

●

●

●
●
●

●
●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●●

●
●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●
●●

●●

●●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●

●●●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●
●●

●●
●
●

●

●

●

●

●
●

●
●
●

●

●
●
●
●

●

●
●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●
●
●
●

●
●●●
●

●

●

●

●
●

●

●●
●●

●
●

●
●

●

●
●

●
●

●●●

●●
●

●

●

●
●
●●

●
●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●
●

●

●
●

●●
●

●

●●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●
●●●

●

●

●

●
●
●

●
●

●

●●
●●

●
●

●●
●
●

●

●

●

●●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●

●●
●●
●

●

●

●

●

●●
●

●

●

●

●

●
●
●●
●●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●●
●

●●●

●

●●

●●

●
●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●
●●
●

●

●

●

●●

●

●

●

●
●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●
●●

●

●

●●

●●●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●●●
●●

●

●
●
●
●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●
●●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●
●
●●●

●●
●

●
●

●

●

●
●

●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●
●

●

●
●

●

●

●●
●●
●

●
●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●●
●

●

●
●
●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●●

●

●

●

●
●
●

●●
●

●

●

●
●

●
●●

●

●
●

●

●●
●
●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●●●●

●

●

●
●

●

●

●
●●
●

●
●

●●

●

●

●
●

●
●

●

●
●●

●

●●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●
●●

●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●

●●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●
●
●●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●
●
●
●

●

●
●

●

●

●●

●
●
●
●

●●

●●

●
●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●●

●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●
●
●

●●

●

●

●●

●
●
●

●●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●
●●

●
●●

●●

●
●

●

●
●
●
●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●
●

●
●●
●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●
●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●
●
●●
●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●
●●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●●
●
●

●●

●●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●●

●

●

●

●

●
●
●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●●●

●
●
●
●

●
●●

●

●

●

●

●●

●

●

●●●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●●

●

●●
●

●
●

●●
●
●

●
●

●●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●●●

●
●

●

●

●

●●●

●

●
●

●●

●

●

●

●●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●
●

●
●●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●●

●
●
●
●●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●
●●

●

●●●

●

●
●
●

●●●
●●

●
●

●

●
●

●●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●
●●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●●●
●

●

●

●

●●

●●

●
●

●●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●
●
●

●●

●●●●

●

●

●
●●

●

●

●

●●●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●
●●

●

●
●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●
●●●
●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●●
●●●●
●
●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●●

●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●●

●
●●

●
●

●●

●

●

●

●
●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●●
●

●●
●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
●
●

●●

●
●●

●
●

●

●

●

●
●
●●●

●
●

●●

●

●
●
●

●

●
●
●

●

●

●●

●●
●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●
●

●●

●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●
●●
●

●●
●

●

●

●●

●

●●●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●●●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●●

●●

●

●●

●
●

●
●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●●
●
●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●
●

●●

●

●

●●

●
●
●
●●
●

●

●

●

●

●
●●

●

●

●

●
●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●
●

●

●
●

●●

●

●

●

●

●
●

●●

●●●

●●

●

●
●

●

●

●

●

●

●●●
●

●

●
●

●
●

●

●

●●●

●
●●

●

●

●●

●

●

●
●

●●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●
●●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●●
●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●●

●

●

●

●

●
●

●●
●
●
●
●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●
●
●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●●●
●
●

●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●
●
●
●

●

●

●

●●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●
●●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●●●
●

●

●

●
●
●

●
●
●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●●

●

●●
●●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●
●
●
●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●●●
●
●●
●
●

●●

●
●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●●●

●

●

●●
●

●
●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●
●
●

●●

●
●
●

●

●
●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●
●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●●

●

●●
●●●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●●
●
●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●
●●

●
●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●●

●

●

●●●

●
●

●

●

●●

●

●

●

●●

●
●

●
●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●
●●

●
●

●

●
●

●●

●
●
●

●
●
●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●
●

●
●●●●

●
●

●

●

●
●

●

●
●●●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●●
●●

●

●

●

●
●

●

●

●●
●

●●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●
●

●●

●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●
●
●

●

●

●

●

●●

●●
●

●

●

●
●●
●

●

●
●
●

●

●

●

●
●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●
●
●
●
●

●

●

●

●

●
●

●
●●

●
●

●

●

●●
●

●

●
●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●●●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●
●●

●
●

●●

●
●

●

●

●
●
●

●

●●

●
●

●●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●
●

●●

●

●

●

●

●

●●
●

●

●●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●
●●●

●

●

●
●●
●

●
●
●

●
●
●

●

●●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●
●

●

●●

●

●●●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●
●
●

●
●

●

●

●
●●

●●●

●

●

●
●
●

●

●

●●●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●
●
●●

●

●
●
●

●●

●

●

●

●

●
●

●
●●
●

●

●

●
●

●

●
●●●

●

●

●●

●●

●

●

●

●●●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●
●●

●●
●●
●
●

●●
●

●
●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●●
●

●
●

●
●

●
●

●

●

●●

●●
●
●

●
●

●

●

●

●

●●

●

●

●
●
●
●
●

●

●

●

●
●
●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●
●
●

●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●
●●

●

●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●●

●

●

●

●●

●●

●

●

●
●●
●●

●●
●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●

●●
●
●

●●

●
●

●

●

●

●

●

●

●●●
●

●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●
●

●●

●

●

●

●
●

●
●

●
●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●●

●●

●●
●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●●●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●●

●

●

●●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●
●

●●

●

●

●

●

●
●●

●

●

●●

●
●

●

●
●

●●

●

●
●

●

●●●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●●●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●●●
●

●

●

●

●

●●

●
●●
●

●
●
●

●

●

●●
●●
●●

●

●●

●

●

●

●●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●●●

●

●●●

●

●

●

●

●●

●●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●●

●●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●
●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●●●
●●●●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●●

●

●

●●
●
●

●

●●

●
●●●

●●
●●

●

●

●
●

●
●
●
●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●
●
●

●

●

●
●

●●●

●
●
●
●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●
●
●
●
●
●

●
●●●

●

●

●

●
●

●
●

●●
●

●

●●●●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●●●

●
●
●

●

●

●●●

●

●

●●

●
●

●
●

●●

●
●

●
●
●●

●

●

●

●

●

●●

●

●

●●

●●

●

●
●
●

●

●
●●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●
●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●
●

●●
●

●
●

●●

●●

●

●

●

●

●

●●
●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●
●
●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●

01005 08024 15005 24017 28006 28043 43012 68003

2
4

6
8

10
12

Note that this is only done for demonstration, as the ALL data has been already RMA-
normalized by the authors of the ALL dataset.
RNA-seq data is expected to be raw read counts. Note that normalization for downstream DE
analysis, e.g. with edgeR and DESeq2 , is not ultimately necessary (and in some cases even
discouraged) as many of these tools implement specific normalization approaches themselves.
See the vignette of EDASeq, edgeR, and DESeq2 for details.
In case normalization is desired, between-lane normalization to adjust for sequencing depth
can be carried out as demonstrated for microarray data.
norm.air <- normalize(airSE, norm.method="quantile")

Within-lane normalization to adjust for gene-specific effects such as gene length and GC-
content requires to retrieve this information first, e.g. from BioMart or specific Bioconduc-
torannotation packages. Both modes are implemented in the EDASeq function getGene

LengthAndGCContent.
ids <- rownames(airSE)

lgc <- EDASeq::getGeneLengthAndGCContent(ids, org="hsa", mode="biomart")

Using precomputed information, normalization within and between lanes can be carried out
via
lgc.file <- file.path(data.dir, "air_lgc.tab")

rowData(airSE) <- read.delim(lgc.file)

norm.air <- normalize(airSE, within=TRUE)

Normalizing for GC content ...

Removing 2707 genes due to missing GC content ...

7

http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/EDASeq
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/EDASeq

EnrichmentBrowser

5 Differential expression

The EnrichmentBrowser incorporates established functionality from the limma package for
differential expression analysis between sample groups. This involves the voom-transformation
when applied to RNA-seq data. Alternatively, differential expression analysis for RNA-seq data
can also be carried out based on the negative binomial distribution with edgeR and DESeq2 .
This can be performed using the function deAna and assumes some standardized variable
names:

• GROUP defines the sample groups being contrasted,
• BLOCK defines paired samples or sample blocks, as e.g. for batch effects.

For more information on experimental design, see the limma user’s guide, chapter 9.
For the ALL dataset, the GROUP variable indicates whether the BCR-ABL gene fusion is
present (1) or not (0).
allSE$GROUP <- ifelse(allSE$mol.biol == "BCR/ABL", 1, 0)

table(allSE$GROUP)

##

0 1

42 37

For the airway dataset, it indicates whether the cell lines have been treated with dexametha-
sone (1) or not (0).
airSE$GROUP <- ifelse(airway$dex == "trt", 1, 0)

table(airSE$GROUP)

##

0 1

4 4

Paired samples, or in general sample batches/blocks, can be defined via a BLOCK column in
the colData slot. For the airway dataset, the sample blocks correspond to the four different
cell lines.
airSE$BLOCK <- airway$cell

table(airSE$BLOCK)

##

N052611 N061011 N080611 N61311

2 2 2 2

For microarray expression data, the deAna function carries out a differential expression analysis
between the two groups based on functionality from the limma package. Resulting fold
changes and t-test derived p-values for each gene are appended to the rowData slot.
allSE <- deAna(allSE, padj.method="BH")

rowData(allSE, use.names=TRUE)

DataFrame with 9010 rows and 4 columns

FC limma.STAT PVAL

<numeric> <numeric> <numeric>

8

http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/limma
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/limma
http://bioconductor.org/packages/limma

EnrichmentBrowser

5595 0.0387427137415798 0.658015072796425 0.512422317574772

7075 0.0173335332976947 0.245894327400656 0.806395402373084

1557 -0.0507645795671912 -1.27962750198965 0.204384187909288

643 -0.0306746085370018 -0.665111958379081 0.507896670249982

1843 -0.414988626849719 -1.76920883313719 0.0806797859183739

...

6300 -0.0447387020187597 -0.93660808882615 0.351786194592616

7297 -0.134520145211526 -1.23590025483274 0.220121484483511

2246 0.0305107670871747 0.786636249939841 0.433824795604893

7850 -0.0209325751219743 -0.239320898612643 0.811470382656448

1593 -0.0127671004549253 -0.256145243469366 0.798497864508864

ADJ.PVAL

<numeric>

5595 0.860946231935227

7075 0.958384566963236

1557 0.683050156652747

643 0.860449125663218

1843 0.506921109570815

... ...

6300 0.782695767830897

7297 0.696870897820251

2246 0.82259484921151

7850 0.958437892107622

1593 0.95569417630511

Nominal p-values (PVAL) are corrected for multiple testing (ADJ.PVAL) using the method from
Benjamini and Hochberg implemented in the function p.adjust from the stats package.
To get a first overview, we inspect the p-value distribution and the volcano plot (fold change
against p-value).
par(mfrow=c(1,2))

pdistr(rowData(allSE)$PVAL)

volcano(rowData(allSE)$FC, rowData(allSE)$ADJ.PVAL)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

P−Value Distribution

P−Value

F
re

qu
en

cy

●●
●
●

●

●

●

● ●

●

●
●

●●
●

●●●●

●
●

●

●●●●
● ●●●●
●
●

●

●
●

●

●●●
●
●

●

●

●

●

●●●

●
●●
●●

●
●
●

●

●
●

●

●
●

●

●

●●
●

●

● ●
●●●

●

●
●

●
●

●

●

●

●
●

●●●●
●

●

●

●●

●

● ●
●

●
●●

●

●

●

●
●

●

●

●
●

●●

●

●●●●● ●
●

●

●●
●

●

●

●

●

●
●

●

● ●

●

●
●
●

●
●

●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●●●
●

●
● ●

●
●

●

●
●
●

●

●

●

●

●
●

●

●●● ●
●●

●
●

●

●

●●●
●

● ●● ●

●
●

●

●
●

●

●

●

●●
●

●
●●

●●
●

●
●

●●●

●

●

●

●●●
●

●
●

●●●●

●

●
●

●

●

●
●

●●
●
●

●

●● ●

●

●●

●● ●●●●●

●
●

●

●

●●●●●●

●

●●●●
●

●●●● ●

●

●●●●●
●●●●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●

● ●●
●●

●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●

● ●●

●

●

●
●

●

●
●

●
●● ●●

●

●●

●

●
●●●

●

●

●

●
●●●●
●

●

●● ● ●●●●
●

●
●

●

● ●
●

●
●

●

●
●

●

●●●●●
● ●●●

●

●

●
●

●●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●
●●

●●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●
●●

●
●●

●

●● ●

●

●

●

●●●
●●●

● ●

●
●
●

●
●●●● ●●
●

●

●●●
● ●●
● ●

●
●

●
●●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●●

●

●

●
●
●●

●
●●●

●

●

●

●

●●

●

●

●●●
●
●

●

●●●
●

●

●

●

●

●

●

●

●

●●●●
●

●●●●●

●

●
●●

●

●

●●

●

●
●

●
●●

●
●

●
●

●
●● ●

●
●

●●●●
●●

● ●
●

●

●

●
●

●
●

●

●●

●●

●●●
●
●

●
●●

●

●
●
●

●

●

●

● ●
●

●●

●

●

●

●●
●

●

●●●●●●
●●●

●

●

●

●●

●●

●●
●

●
●

●

●

●

● ●

●

●●
●

●

●●
●●●

●●●
●●

●
●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●●●●
●●

●

●●●
●

●

● ●● ●●

●

●●

●
● ●

●

● ●

●● ●

●

●●

●

●

●

● ●

●

●

●

●

●
●●● ●

●
●

●

●
●●

●

●●

●●
●

●

●

●

●
●

●●

●

●

●
●

●

●●●

●

● ●●●●
●●

●

●●●

●

●

●●

●

●

●
●
●●

●
●●●

●

●

●
●

●●●●●●
●
● ●

●

●

●

●

●
● ●●●●●●

●
●

●

●●
●

●

● ●

●

●●
●

●
●

●

●
●

●
●

●

● ●
●

●

●

●
●

●● ●●●●

●

●●
●●●

●
●

●
●

●●

●

●

●●
●

●
●

● ●

●

●
●

●

●

●●●●

●
●
●

●● ●●●

●
●
●●

●

●●●●

●

●

●

●

●
●● ●●
●

●
●

●
●

●

●

●
●●

●●
●●

●

●
●

●

●
●● ●● ●

●
●

●●

●

●●
●●●

●

●

●

●

●

●

●●

●

●●

●
●●

●
●

●
●● ●●

●

●● ●●●
●

●
●

●●

●
●●●

●
●
●●

●

●

●●●●●●
●●
●
●
●●●●●

●

●
●

●

●

●

●
●●

●
●●

●

●●●
●●

●

●
●

●●●
●●●

●

●
●●●
●●●

●●●

●

●●

●

●●●●
●
●●●●●

●
●

●
●●●

●
●●●

●

●

●

●

● ●●●
●
●●

●

●

●

●●●●
●

●●●●●●●●
●
●

●

●●●
●

●

●

●●

●●

●
●●

●
●

●

●

●

●

●●
●

●●

●
●●

●●● ●●

●

●●
●

●

●●
●

●

●●●●

●

●
●●●

●
●●●●
●
●●

●
●

●●
●

●
●●

●●●
●
●●●●●

●

●

●
●

●

●

●
●
●

●

●

●
●●

●●●

●
●●● ●●●
●
●

●
●

●
●

●

●●●

●
●

●●●●
●
●

●

●

●
●●●●●

●
●
●

●● ●

●

●
●

●●

●

●
●

●

●

●
●●●● ●●

●●
● ●

●

●●●
●●●

●

●
● ●●
●●

●
●

●
●●

●

●●
●

●●●

●

●

●●●

●

●
●●●●●
●
●

●

●

●●

●
●

●

●●

●

●●●

●

●●
●●

●

●●●

●
●

●

●

●

●
● ●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●●●●

●
● ●

●●●

●

●

●●
●

●

●
●●●

●

●
●●

●

●
●

●
● ●● ●●

●
●

●

●●

●

●

●

●
●

●●
●● ●

●
●

●

●
●

●●●

●

●●●●
●
●

● ●●●●

●

●

●

●

●
● ● ●

●

●

●

●

●●
●

●

●●
●

●
●

●
●

●

●●
●

●
●●

●
●

●

●●
●●●

●

●

●

●●●●
●

●
●

●●
●

●

●

●●
●●●

●

●

●●
●●

●●
●●●●●●●

●
●

●

●

●
●

●●●●●

●

●
●

●
●●●

●
●●●

●

●●

●

●●●

●

●

●●
● ●

●

●

●

●

●
●

●●●
●● ●

●

●
●

●

●

●●

●

●
●

●
●●●●●

●

●
●
●

●

● ●

●
●

●

●

●●

●●●

●

●

●
●●

●
●●

●
●

●●●

●

●

●

●●●●

●

●
●

●

●

●
●

●

●

● ●●
●●

●
●

●

●
●

●

●
●

●

●

●●
●

● ●

●●●●●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●
● ●

●

●●

●

●

●

●●●

●

●

●

●●●●
●●●

●

●

●

●
●

●●

●

● ●
●

●●

●

●
●

●

●
●

●

●

●
●●●

●●
●

●●

●

●●

●

●

●

● ●●
●

●

●●●
●●●●

●

●

●

●●●

●

●●
●●

●●●
●●●●
●
●●●●

●
●

●

●

●
●●●

●

●
●

●●●

●

●
●

●
●

●
●

●

●●
●

●
●
●●

●
●

●

●●

●●●
●●
●

●●●
●●

●

●

●

●●●●
●

●

●
●●●● ●

●

●
●

●●
●

●●

●

●

●
●

●
●●

●

●

●
●

●●
●

●
●

●

●●●●

●

●

●●

●

●
●●

●●●●●●●
● ●●●

●●

●●
● ●●

●

●

●

●

●●●
●

●●●●●

●

●●
●
●●●●●
●●

●

●●●
●

●●●

●
●●●● ●

●

●●
●●

●●
●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●

● ●

●

●

●

●● ●

●

●●●●●

●

●
●

●

●
●

●

●

●●●●
●

●
●

●
●● ●

● ●

●

●

●●

●

●
●

● ●

●

● ●
●●●●

●●

●

●

●
●

●

● ●
●

●

●

●

●●●
●●●● ●●
● ●

●●
●
●
●

●
●

●
●

●●

●

●●

●

●●

●

●●

●

●

●

●
●

●●●●
●

●

●● ●●
●●

●●●●

●

●●
●

●●●●●

●

●●●●●●
●
●

●●●●●●●

●

●

●

●
●●

●●

●●

●●
●
●

●

●
●

●●

●

●

●
● ●

●

●

●
●

●

● ●
●

●

●●
●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●●●
●

●
●

●

●
●●●

●
●

●

● ●

●

●

●

●

● ●

●
●

● ●
●

● ●●
●●

●

●
●

●
●
●●●●

●

●
●●●●

●●
●●● ●●

●

●

●
●

●
●

●

●●●●●●●●
●
●●

●

●●●
● ●●

●● ●●
●

●

●

●

●

●●●●

●

●●
● ●
●

●
● ●

●
●●●

●

●

●

●
●●●

●●
●●●●●

●

●
●●

●●●
●
●

●

●●

●
●●
●●

●

●
●

●●●
●●

●

●●●
●●

●
●

●●

●●

●●●

●

●
●● ●

●

●

●●
●●●● ●

●
●

●
●
●
●●●●
●●●

●

●

●

●●●●
●●

●

●
●
●●

●

●
●

●

●●●

●

●

●

●●●●
● ●
●●

●●
●

●
●

●
●

●
●
●

●

●

●

●

●

●
●

●●●
● ●● ●

●

●

●
●

●
●

●
●●

●

●●●●
●

●

●●●

●●
●

●

●●
●●

●
●●

●
●

●●
● ●

●

●

●

●
●

●

●
●●●●

●

●

●●
●

●

●

●●●
●

●
●●

●

●

●●●

●

●
● ●

●

● ●

●●
●●

●

●

●
●

●
● ●

●●●●
●

●

●

●●
●●●

● ●
●

●

●
●

●

●

●

●

●

●●

●●
●

●
●

●
● ●

●

●

●

●
●

●●
●

●●
●

●

●●

●

●

●
●

●
●●●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●
● ●● ●● ●●

●

● ●
●

● ●

●

●

●●
●

●

●●●
●

●●

●

●

●

●

●

●

●
● ●●●
●

●

●

●●●

●

●●

●

●

●

● ●

●

●

●
●

●

●
●

● ●

●●●●
●●

●●

●

● ●
●

●

●

●●●●

●
●

●
●
●●

●
●

●

●

●●●●●●
●●

●

●
●●
●
●

●●

●

●
●

●
●

●

●●●●●●●●●●

●

●
●● ●●●

●

●
●

●
●●

●

●●
●

●●
●

●●●
●

●●●●●●

●

●
● ●

●

●●

●
●
●●● ●
●
●●●●●●●

●

●
●●

●

●

●
●
●●
●

●

●●

●
●●●
●●●●●
●●

●

●●●●

●

●●●●
●

●

●

●

●

●●●●
●

●

●
●

●

●

●

●
●

●
● ●●●

●●●
●●

●

●

●
●●

●

●

●
●

●

●

●
●●

● ● ●● ●●
●

●

●

●●
●

●

●

●

●●●

●

●●●●
●

●

●

●●●
●● ●

●
●

●

●
●

●●●

●

●

●
● ●

●

●

●

●●●
●●

●●●
● ●

●●

●

●

●

●●
●

●●●
●●

●

●●

●

●● ●
●

●

●

●
●

●

●

●●
●

●
●

●

●●

● ●
●

●●

●

●

●

●

●

●

●

●

●●●

●●
●

●●

●

● ●
●●

●●●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●●

●

●

●●

●
●

●

●

●
●●

●●
●

●● ●
●
●

●●
● ●

●
●●

●

●●● ●●●
● ●

●

●

●

●
●●
●●

●
●

●
●

●
●●
●●

●

●

●

●
●●●

●

●●●●

●
●

●●●●●
●
●●●

●

●
●●●●●●

●
●●

●

●

●

●●
●

●
●

●●●●●●●

●●
●

●
●

●●●●
●

●●

●
●●

●●●●●●●●
●
●●

●
●

●
●●●●●●●

●

●

●

●
●

●
●●●●●

●
●

●

●●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●
●●●●

●

●
●

●
●

●

●

●
●●
●●

●●●

●

●

●
●

●
●
●

●
●

●
●
●●

●●●●

●

●●●●●●
●
●●

●
●

●
●

●

●

●

●●●●
●
●

●

●

●

●●
●

●●

●

●

●●

●

●

●●●

●

●●

●

●●
●● ●

●●●●
●

●

●

●

●●●●
●
●

●
●●●●

●
●

●

●

●●●●●
●
●

●
●

● ●●

●

●
● ●●●

●
●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●●

●

●

●
●

●
● ●

●●●
●
●

●●●●

●

●

●
●

●

●
●

●●
●

●

●●● ●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●●
●

●
●●

●
●●

●

●
●

●

●

●●●●

●

●●●

●

●
●

● ●

●
●
●●●●

●

● ●
●

●●

●

●●
●
●●

●●
●●●

●●
●
●

●●

●
●

●

●●
●

●
●

●

●●●●●
● ●

●●

●

●●●●●●●

●

●

●

●

●●●●
●

●
●●

●
●

●●
●

●●

●
●

●●●●
●

●

●●

●

●
●●●

●

●

●

●●

●

●●●●
●●

●●
●

● ●

●

●

●●●
●

●●●●●
●

●●●●
●● ●●●●●●●
●
●

●

●●
●

●
●●

●

●
●

●
●

●
●

●

●●●

●

●●●●

●

●●
●

●●

●

●●
●
●●●●●●

●●●

●

●●

●

●●●●●●
●

●
●

●

● ●●
●

●●● ●●●

●

●
● ●

●

●

●
● ●

●●

●
●●● ●

●

●

●●●

●

●●
● ●
●

●

●

●

●

●
● ●●●
●●
●

●
●

●

●
●

●

●

●
●● ●

●
●

●

●
●

●
●●●●

●

●
●
●

●

●

●●
●
●

●

●
●

●●
●

●

●●●●●●

●

●●●

●

●

●

●●●

●

●

●
●

●

● ●

●

●

●

●
●●●

●

●
●

●

●●

●

●

●
●●

●●

●

●●

●

●
●

●●

●
●

●

●

●

●●● ●●●●
●

●

●

●
●

●● ●● ●● ●●● ●●

●

●

●
●

●

●

●
●

● ●

●

●
●●
●●

●
●● ●●●

●

●

●●
●

●
●

●

●

●

● ●●
●

●●●●
● ●●●●

●

●
●

●

●●
●
●●●●

●
●●●

●
●●●

●
●●

●

●
●●

●
●●● ●●●

●

●

●
●

●

●
●●

●

●

●●
●

●
●●

●

●●
●●

●

●●
●●

●

●
●●

●
●

●

●

● ●
●

●
●

●
●

●●

●

●●●

●

●

● ●
●

●
●
●

●
●●●●●●

●
●●●●●

●

●●●●●
●

●●●
●

●

●

●
●

●●●● ●
●
●

●●
●

●●●
●

● ●

●
●

●

●

●
●

●●
● ●
●●●
●

●
●

●
●

●
●
●

●●
●

●

●

●
●

●

●

●

●●●
●

●●

●

●
●●●●

●
●

●

●

●●●●
●

●●
●

●

●
●●
●●

● ●
●

●●●●●

●

●

●

●● ●
●●● ●●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●●
●●

●

●

●

●

●●●●
●

●

●●●●●

●

●
●●●

●

●●●●●
●

●●
●●

●

●

●

●●

●

●
●

● ●

●●
●

● ●
●

●
●
●

●
●

●
●

●

●

●

●● ●

●●

●

●

●
●

●

●
●

●

●

●

●● ●●
●●●

●
●

●

●●
●●
●

●

●●

●

●
●

●

●
● ●●

●
●

●

●

●

●
● ●

●

●

●

●●●
●

●

●
●
●

●

●

●
● ●●

●●

●

●
●

●

●●● ●

●

●

●

●●●● ●

●

●
●

●

●

●

● ●●

●
●●

●●
●●●
●
●●● ●●

●●
●

●
●●●

●
●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●● ●●●●●●
●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●
●●●●●

●

●
●
●

●
●

●
●

●●

●●

●●●●●●●
●

●

●●●●

●

●●
●●
●●●●

●
●

●

●
●●●
●
●●●
●
●●●●

●

●

●
●●●●●

●

●

●●
● ●●

●

● ●●
●●

●

● ●
●●●
●●●●

●● ●●

●

●
●

●

●●●●●
●
●

●
●●●●●●

●
●●●

●
●●●●

● ●
●● ●●●●

●

●

●●

●
●●

●

●
●●
● ●

● ●

● ●●●●
●

●●

●

●●
●●●

●

●

●

●●

●

●

●

●

●
●

●

●●●
● ●

●

●
●

●●●
●●

●

●●
●●

●

●●●
●

●●
●●●

●

●

●●

●
●

●

●

●

●

●●

●

●
●●

●

●

●●●●●

●

●
●
●

●●●
●● ●

● ●●
●●●●

●●
●

●

●● ●

●
●

●

● ●●

●

●

●●●
●● ●
●●

●
●

●

●

●

●

●
●

●

●●
●

●
●●●

●
●

●●
●●●

●

●

●●
●●●

●

● ●

●

●

●

●

●●●●
●

●●
●

●●

●

●●

●●

●

●

●●
●

●

●

●

●●
●●

●●●
●

●

●

●

●

●

●
●●

●

●●●●
●●●●●●●

●

●

●●●
●
●

●
●●

●

●

●
●
●●

●
●●

●●

●

●
●

●

●
●●

●

●●●●●

●

●

●

●
●●●●●
●●

●●
●

●
●

●

●

●●

●

●
●

●●

●

●●●● ●

●

●●

●
●

●

● ●
●

●
●

●●●●
●

●

●

●

●●● ●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●●

●●●●●

●

●

●
●

●●● ●

●
●

●●●

●

●

●

●
●

●●
●●

●
●

●
●

●●
●●

●

● ●
●

●●
●

●

●

●●
●

●● ●●

●

●

● ●●
●

●

●
● ●

●●● ●

● ●

●

●
●

●●● ●●
●

●

●

●

●

●

●
●●●●

●

●●
●●●●

●

●●●●●
●●● ●●

●

●

●

●●

●

●●●

●

●

●
●

●

●● ●●
●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●●●

●

●●●●
●●

● ●

●

●
●

●

●●
●

●

●

●
●●

●

●
●●
●
●

●
●

●
●

●

●

●

● ●●●●●
●●●
●●●

●

●●●●

●●
●

●
●● ●

●

●●

●

●
●

●

●●●
●●●●

●

●
●

●
●

●●
●

●●

●
●●●●●●

●
●

●●

●

●
●

●

●
●

●●●
●●●

●●

●
●●

●●●●●

●●●
●●● ●●
●●

●
●

●

●

●

●●●● ●●
●●●
●
●●

●
●

●
●●●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●●●●●

●

●
●●

●
●

●
●

●

●

● ●●

●

●●
●

●

●●

●
●

●●

●

●●●

●

●

●

●

●
●●●●●

●●

●

●
●

●
●

●
●

●
●

●

●●

●

●
●

●●

●

●
●

●●
● ●●●●●●●●

●

● ●

●

● ●

●

●●●
●
●●●
●

●
●●

●

●
● ●

●
●●●● ●●

●●

●

●

●

●
●

●

●●

●

● ●

●

●

●
●

●●
●

● ●

●
●

●●
●

●
●

●

●●

●

● ●

●
●

●

●●●●

●

●●●

●

●
●

●

●
●

●

●

●
● ●●

●● ●
●

● ●
●

●

●

●●●●

●

●

●

●

●●
●

●●●

●

● ●●●●

●

●
●●●●●

●●
●

●●
●●●

●

●

●

●

●●●●●

●

● ●
●

●

●

●
●

●

●●●●●

●

●●●
●●

●●●●
●●●●
●●●● ●

●● ●
●

●●●
●●

●

●●●

●

●●

●

●
●

●

●
●

● ●

●

●●
●
●●●

●

●

●

●●
●

●

●●●● ●●
●

●

●

●●

●

●●●●

●
●

● ●
●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●●●●●

●

● ●●
●

●

●
●

●

●

●●●

●

●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●●●

●

●

●

●●●
●● ● ●●

●

● ●●

●

●

●●

●

●
●
● ●●

●

●
●

●
●

●

●●
●

●
●

●

●●●●
●

●

●

●

●
●

●

●

●

●

● ●●● ●

●

●

●

● ●

●

●●
● ●

●

●

●
●

●●●
●

●

●
●

● ●

●

●
●●

●

●●●

●

●

●

●

●

●●●
●

●

●

●

● ●

●

●

●

●

●
●●

●

●●●
●

●

●

●●
●

●

●
●●

●

●
●●

●●

●●●●●●●●
●

●
●●●●●

●

●●
●

●●●●
●

●●
●

●

●

● ●

●

●
●

●

●●●●

●

●
●

●●

●

●

●
●

●●●
●

●

●●
●

●●
●

●
●

●

●
●

●

●●●
●● ●●

●

●

●

●
●●

●●

●●●●●●

●

●

●
●●●

●

●

●
●

●●

●

●
●

●

●

●●●

●

●●
●●●

●●
●

●
●

●

●

●●●
●

●●
●

●

●

●●●
● ●●

●●●
●

●●●

●

●
●

●●

●

●

●
● ●

●
●

●

●●

●

●
●

●
●

●
●●

●

●● ●●
●●

●

●

●
●

●
●

●●
●

●●
●

●●
●

●
●

●
●

●●●●

●

●● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●●
● ●

●● ●●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●●●● ●●

●

●
●

●

●

●

●

●●●●
●

●

●

●

●
●

●●
●●

●

●●
●

●●
●
●
●

●

●●

●

●

●●
●

●
●

●
●

●
●

●

●
●●●

●●
●●

●
●

●●●●
●●

●

●●● ●
●

●●●

●

●
●

●
●●●

●

●

●

●

●●● ●●●

●

●

●●●●
●● ●●

●
●●●
●

●

●

●

●

●

●

●●

● ●●
●●
●

●
●
●

●

● ●
●

● ●●●
●
●

●
●

●
●●

●

●●●●

●

●

●

●●
●●

●

●
● ●
●

●●
●●●

●●

●

●
●●●●

●
● ●●

●

●

●
●●

●

●●

●

●●●
●
●

●●●
●

●

●

●●

●

●
●●

●●

● ●

●

●
●

●
●●

●

●●

●
●●

●

●
●

● ●

●
●

●
●

●

●
●

●●
●

●

●

●

●●●
● ●

●

●●●
●

●●● ●
●

●

●●●
●●

●

●
●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●

● ●

●

●
●●

●
●

●●
●

●

●

● ●● ●

●

●
● ●●●●

●

●● ●●

●

●●
●

●●●●●

●

●

●

●

●

●●●

●

●
●

●●●

●

●

●●
●

●
●●

●

●●●
●

●
●

●
●

●

●
● ●●●

●
●
●●
●
●
●

●

●

●●●●
●

●

●●
●

●

●

●

●
●●●

●

●
●

●

●

●
●

●●●● ●●●● ●
●●

●

●● ●

●

●
●
●

●
●
● ●●

●
●

●

●
●
●●●

●
●●●

●
● ●

●

●●●
●

●

●●
● ●●●

●
●

●

●
●

●
●●●●●

●●●

●

●●
●

●

●

●
●●

●
●●●●●

●
●●● ●

●
●

●

●●

●

●●

●

●

●

●
● ●●

●

●●
●

●
●

●

●

●

●●
●

●
●●

●●

●
●

●
●

●

●
●

●●
●●

●

●
● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●●●

●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●●
●

● ●
●●

●
●

●●

●

●

●

●

●

●●

●

●

●
●

●● ●

●

●●●

●

●
●● ●●●●

●
●

●

●●●

●

●●
●

●

●

●

●
●

●

●●●●●●
●

●

●

●
● ●

●

●
●●

●●● ●●●
●

●●●●
●●

●

● ●

●●●●
●

●●

●
●

●

●
●

●●

●

●●●
●●●●

●● ●
●●● ●

●●
●● ●

●●

●

●

●

●●●●●
● ● ●

●

●●
●

●

●●

●
●

●
●●●

●
●●●●

●
●●●

●

●

●

●

●

●
●

●●

●
●

●

●

●●●●
●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●
●●

●
●

●
●

●●● ●

●

● ●
●

●● ●●
●

●

●
●
●

●
●●

●●
●●●●

●

●●●

●

●

●

●●
●
●

●

●
● ●

●●
● ●

●

●

●

●
●●●

●

●●
●●

●

●●
●

●
●● ●
●●● ●●

●

●
●

●

●●●●

●

●●●●

●
●

●
●●

●●
● ●

●
●

●

●●
●

●

●●
●

● ●●

●

● ●●●●
●

●
●

●

●
●

●

●

●●●●●

●

●

●●

●

●
●

●

●

●●

●

●●●

●
●

●
●

●

●

●
●●

●●
●●

●

●

●

●

●●●

●

●●●
●●

●

●●

●

● ●●

●

●

●

●

●

●
●●

●

●

●
●●●

●

●●

●

●

●●
●● ●

●●●●
●

●

●

●

●●●
●

●

●
●

●
●●
●●

●

●
●

●

●

●

● ●●

●

●

●●●●

●

●
●●

●

●

●

●●
●

●

●

●
●

●
●●

●

●
●●

●●●● ●
●

●

●
●

●

●
●●

●

●
●

●●●
●

●

●●●

●

●●●●
●●

●● ●●●
●

●
●
●●●● ●●

●

●

●

●●

●

●
●

●

●
●●●

●
●

●●●
●

●● ●
●

●

●

● ●●●●
●

●
●●

●

●●●●

●●●●

●

●

●●

●
●

●

●

●
●●

●●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●●● ●
●

●

●

●

●●
●

●
●
●

● ●●●●●●●●
●●

●●
●●

●●●
●●

●

●

●

●●●●●

●

● ●●
●

●
●●●● ● ●

● ●●●●●
●●

●

●

●

●●
●●

●●●●●●
●

●

●

●
●

●

●
●
●

●

●●●
●●

●

●

●

●

●

●
●●

● ●

●

●
●

●

● ●

●
●●

●●●●

●

●

●

●

●
●

●

●●
● ●

●●

●

●

●
●●

●●● ●●

●

●

●
●
●

●●

●

●

●
●

●●

●

●

●

● ●●

●

●●●●●●
●●

●●

● ●● ●

●
●

●●● ●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●
●●

●

●

●

●●●
●

●● ●
●

●
●●

●

●
●

●●

● ●
●

●●
●

●
● ●●

● ●
● ●

●

●

●●

●

● ●
●

●

●

●

●
● ●
●●●●● ●●
●●

● ●

●

●
●

●
●

●
●

●

●

●
●

●
●
●

●●
●●●●●
●

●

●

●●

●

●
●

●●● ●●

●

●

●●●●
●

●

●●
●●

●
●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●
●

●●

●

●

●●

●

●
●

●●
●

●

●
●

●

●

●
●
●

●

●

●

●●
●●

●

●
●

●

●

●

●
●

●
● ●●

●

●●●●
●● ●●●

●
●●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

● ●
●●

●
●●● ●

●

●
● ●●

●●
●

●

● ●

●●●

●
●●

●
●

● ●

●

●●●

●

●●
●●

●●
●

●●●

●

●●●●
● ●

●●
●

●

●
●

●
●●

●

●
●

●

●●
●

●
●●●
●

●

●
●

●●
●● ●
●

●
●●

●

●●
●

●●●●●
● ●●●

●

●●●●●●●●●●

●

●
●

●●
●

●

●
●

●●●●
●

●

●

●
●●●

●
●

●
●

●

●

●●
●

●●●
●

●

●

●
●

●

●●●●
●●

●●
● ●
●●

●
●

●

●

●

●●
●

●

●
●●

●
●●

●
●

●
●●●

● ●●●

●

●
●

●

●●
●

●●●●
●●

●

●●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

● ●
●●

●

● ●●

●
●

● ●●
●

● ●
●

●

●

●

●
●●●

●●

●●●

●

●

● ●●
●

●
●

●

●●

●

●

●
●● ●●● ●●

●
●

● ●

●●●●

●

●
●

●

●

●●
●

●●
● ●● ●●

●●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

● ●
●

●
● ●●●●

●

●●●

●●

●
●●

●●●● ●●
●
●

●●●●
●

●

●
●
●

●

●
●

●
●

●●
●

●

●● ●
●●

● ●●
●

●

●

●●
●●●

●●
●

●

●●●●●

●

●

●

●

●

●
●●

●

●

●●●●●● ●
●●

●

●

●

●

●●
●●

●
● ●●● ●

●

●
●

●
●

●● ●
●
●●●●●

●

●●

●

●
●●

●●
●●

●
●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

● ●●● ●●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●●●●● ●

●●
●

●
●●

●
●

●
●●●●

●●● ●

●

●
●

●

●

●

●●
●

●●

●

●

●●
● ●

●●
●●

●

●
● ●
●

●
●

●

●

●●

●●●

●
●●●

● ●●●

●

●

●

●●

●
● ●●
●●●●

●●●

●

●●
●●● ●●

●

●

●
●

●
● ●●●●

●

●

●

● ●

●●
●●●

●●
●●●●●

●

●●
●

●

●●
●●●

●●
●●

●

●
●

●

●

●

●

●●
● ●
●

●●●●

●

●
● ●

●●●● ●
●●

●●

●
●

●
●

●
●●●●● ●● ●●●●
●
●● ●●

●

●●●●●

●
●

●●
● ●●●

●

●

●

●
●

●
●●

●

●●●

●

●●
●●●

●●

●
●
●

●●●●

●

●
●

●●

●

●

●
●

●

● ●
●●●

●
●

●
●

●

●

●

●●

●

●●● ●●●●●●

● ●
●

●

●
●

●

●

●●●●

●

●

● ●
●

● ●

●

●●

● ●

●

●● ● ●●●●●●●
●

●●●

●

●
●●

●●
●●

●

●
●

●●●● ●●

●

●

●

●

●

●
●●●●

●
●

●

●
●

●
● ●

●

●●
●

●

●●
●

● ●●
●●

●●●●●●●
●

●●●
●●

●●●

●

●
●
●

●

●
●

●

●
●●

●

●
●●

●
●

●
●●

●

●

●

●

●
●

●
●
●

●●●

●

●●

●

●●
●

●● ●
●●●●●●

●

●
●
●● ●●●

●
●●●● ●●

●

●

●●●●●●●
●●●

●

●

●

●

●●

●●●
●

●

●● ●●●

●

●●

●

●

●●●
●

●

●

●

●●

●

●
●

●

●
●

●●●●

●

●
●●
●

● ●●● ●
●

●

●●

●

●

●

●

●

●

●

●●
●●●●

●

●

●

●

●

●● ●●●

● ●

●
●

●

●
●

●

●●

●
●●
●

●●●●●●●
● ●

●●

●

●●●●●●

●
●

●

●

●

●
●● ●●

●

●
●

● ●

●●

●
●
●●

●●●●●
●●

●

●●●●●●●

●

●●●
●

●
●●●

●●
●

●●
●

●
●● ●

●

●●
●●

●

●

●

●

●

●

●

●●●● ●

●●
●

●
●●

●●

●

●

●

●
●
●

●

●

●●
●●

● ●
●●

●
●

●

●

● ●

●
●● ●

●●●●●●

●

●●●●●

●
●

●

●● ●
●

●●●●
●

●

●
●●●

●

●●●●●●

●

●●●

●

● ●●

●

●●
●

●

●●

●
●

●
●

●

●

●●
●

●

●

●

●●
●●●●● ●● ●●●●●●

● ●●●
●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●● ●
●

●●

●

●
●
●

●

●

●

●●●●● ●●

●●
●

●

●●
●

●●●

●

●●

●

●
●
●

●

●●●
●●
●●

●

●●
●●●●

●

● ●

●
● ●●

●
●

●

●

●●
● ●●●●●

●
●

●

●
●

●
●●
●

●
●

●●
●

●
● ●●● ●

●

●
●

●

●

●

●
● ●●

●

●
●

●
● ●●

●

●

●●

●

●
● ●

●

●

●

●●●●
● ●

●●
●●

●

●●●

●

●
●

●

●●●●

●

●

●

●

●● ●
●

●●●

●

●

●

●
●● ●

●
●

●

●●

●
●

●

●
●

●

●●

●

●●●
●

●

● ●●
●

●●

●

●●●●
●

● ●●
●● ●

● ●●
●

●●●●

●

●

●

●

●●

●

●
●

●

●

●●
●●●
●●

●

●

●
●●

●
●● ●●

●

●

●●

●

●● ●●
●

●

●

● ●
●

●

●

●

●

●

●●

●

●●●
● ●

●

●
● ●● ●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●●
●

●●
●

●
●

●

●

●●

●

●

●
●●

●●
●

●
●

●

●

●

●
●

●

●

●●

●
●
● ●

●

●●
●●●●

●
● ●

●

●●
●
●●

●

●

●

●
●●

●

●

●

●●●

●● ●
●● ●

●

●

●●

●

●●● ●
●● ●

●●●
●●●●

●

●

●●
● ●●

●
●●

●
●

●

●●
●●●

●
●

●

●
●

●●●

●

●●

●

●●●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●●
●●

●●
●

●

●●
●

●●●● ●● ●●●●
●●● ●

●●
●
●

●

●
●

●
●

●

●
●●

●

●

●

●●
●●

●●●
●

●●●●●●●●●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●●

●

●●
●●

●
●●

●
●●●●

●●●
●●

● ●

●
●

●● ●

●
●

●

●●
●●●

●
●
●●

●
● ●●

●

●

●●
● ●● ● ●

●●
●●●

●

●

●

●●
●●

●

●
●

●

●

●

●● ●●●
●

●●●
●●

●

●

●● ●
●
●●

●
●

●
●●●
●

●

●

●
●

●

●

●●●
●

●

●●
●●●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
1

2
3

4
5

Volcano Plot

log2(foldChange)

−
lo

g1
0(

p)

The expression change of highest statistical significance is observed for the ENTREZ gene
7525.

9

https://CRAN.R-project.org/package=stats

EnrichmentBrowser

ind.min <- which.min(rowData(allSE)$ADJ.PVAL)

rowData(allSE, use.names=TRUE)[ind.min,]

DataFrame with 1 row and 4 columns

FC limma.STAT PVAL

<numeric> <numeric> <numeric>

7525 1.42160480213081 7.01873609978134 6.59964850529937e-10

ADJ.PVAL

<numeric>

7525 5.94628330327473e-06

This turns out to be the YES proto-oncogene 1 (hsa:7525@KEGG).
For RNA-seq data, the deAna function carries out a differential expression analysis between the
two groups either based on functionality from limma (that includes the voom transformation),
or alternatively, the popular edgeR or DESeq2 package.
Here, we use the analysis based on edgeR for demonstration.
airSE <- deAna(airSE, de.method="edgeR")

Excluding 3118 genes not satisfying min.cpm threshold

rowData(airSE, use.names=TRUE)

DataFrame with 12937 rows and 6 columns

length gc FC edgeR.STAT

<integer> <numeric> <numeric> <numeric>

ENSG00000000003 8000 0.41 -0.404945626610932 35.8743710016452

ENSG00000000419 23656 0.398 0.182985434777531 5.90960619951562

ENSG00000000457 40886 0.403 0.0143477674070905 0.0233923316993606

ENSG00000000460 190985 0.392 -0.141173372957313 0.492929955080683

ENSG00000000971 95627 0.352 0.402240426474171 27.8509962017613

...

ENSG00000273270 NA NA -0.12979385333726 0.901598359265221

ENSG00000273290 NA NA 0.505580471641003 23.0905678847793

ENSG00000273311 2214 0.49 0.00161557580855132 8.04821151395742e-05

ENSG00000273329 NA NA -0.222817127090519 1.42723325850574

ENSG00000273344 2271 0.486 0.0151704005097405 0.005435032737617

PVAL ADJ.PVAL

<numeric> <numeric>

ENSG00000000003 0.00023480446553515 0.00213458295385677

ENSG00000000419 0.0388020657296094 0.0915691945173217

ENSG00000000457 0.88192930278718 0.922279475398735

ENSG00000000460 0.500971503870371 0.619013213521584

ENSG00000000971 0.000568781941938381 0.00403820532305421

...

ENSG00000273270 0.367980257149634 0.495892935815196

ENSG00000273290 0.00106330522558279 0.00639218387702814

ENSG00000273311 0.993044448477588 0.996356136959404

ENSG00000273329 0.263765393265588 0.388294594068834

ENSG00000273344 0.94290685117858 0.962777106053456

10

http://www.genome.jp/dbget-bin/www_bget?hsa:7525
http://bioconductor.org/packages/limma
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/edgeR

EnrichmentBrowser

6 ID mapping

Using genomic information from different resources often requires mapping between different
types of gene identifiers. Although primary analysis steps such as normalization and differ-
ential expression analysis can be carried out independent of the gene ID type, downstream
exploration functionality of the EnrichmentBrowser is consistently based on NCBI Entrez
Gene IDs. It is thus, in this regard, beneficial to initially map gene IDs of a different type to
NCBI Entrez IDs.
The function idTypes lists the available ID types for the mapping depending on the organism
under investigation.
idTypes("hsa")

[1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT"

[5] "ENSEMBLTRANS" "ENTREZID" "ENZYME" "EVIDENCE"

[9] "EVIDENCEALL" "GENENAME" "GO" "GOALL"

[13] "IPI" "MAP" "OMIM" "ONTOLOGY"

[17] "ONTOLOGYALL" "PATH" "PFAM" "PMID"

[21] "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG"

[25] "UNIGENE" "UNIPROT"

ID mapping for the airway dataset (from ENSEMBL to ENTREZ gene ids) can then be
carried out using the function idMap.
head(rownames(airSE))

[1] "ENSG00000000003" "ENSG00000000419" "ENSG00000000457" "ENSG00000000460"

[5] "ENSG00000000971" "ENSG00000001036"

airSE <- idMap(airSE, org="hsa", from="ENSEMBL", to="ENTREZID")

Encountered 125 from.IDs with >1 corresponding to.ID

(the first to.ID was chosen for each of them)

Excluded 1036 from.IDs without a corresponding to.ID

Encountered 12 to.IDs with >1 from.ID (the first from.ID was chosen for each

of them)

head(rownames(airSE))

[1] "7105" "8813" "57147" "55732" "3075" "2519"

Now, we subject the ALL and the airway gene expression data to the enrichment analysis.

11

http://bioconductor.org/packages/EnrichmentBrowser

EnrichmentBrowser

7 Enrichment analysis

7.1 Set-based enrichment analysis

In the following, we introduce how the EnrichmentBrowser package can be used to perform
state-of-the-art enrichment analysis of gene sets. We consider the ALL and the airway gene
expression data as processed in the previous sections. We are now interested in whether pre-
defined sets of genes that are known to work together, e.g. as defined in the Gene Ontology
(GO) or the KEGG pathway annotation, are coordinately differentially expressed.
The function getGenesets can be used to download gene sets from databases such as GO
and KEGG. Here, we use the function to download all KEGG pathways for a chosen organism
(here: Homo sapiens) as gene sets.
kegg.gs <- getGenesets(org="hsa", db="kegg")

Analogously, the function getGenesets can be used to retrieve GO terms of a selected ontol-
ogy (here: biological process, BP) as defined in the GO.db annotation package.
go.gs <- getGenesets(org="hsa", db="go", go.onto="BP", go.mode="GO.db")

If provided a file, the function parses user-defined gene sets from GMT file format. Here,
we use this functionality for reading a list of already downloaded KEGG gene sets for Homo
sapiens containing NCBI Entrez Gene IDs.
gmt.file <- file.path(data.dir, "hsa_kegg_gs.gmt")

hsa.gs <- getGenesets(gmt.file)

length(hsa.gs)

[1] 39

hsa.gs[1:2]

$hsa05416_Viral_myocarditis

[1] "100509457" "101060835" "1525" "1604" "1605" "1756"

[7] "1981" "1982" "25" "2534" "27" "3105"

[13] "3106" "3107" "3108" "3109" "3111" "3112"

[19] "3113" "3115" "3117" "3118" "3119" "3122"

[25] "3123" "3125" "3126" "3127" "3133" "3134"

[31] "3135" "3383" "3683" "3689" "3908" "4624"

[37] "4625" "54205" "5551" "5879" "5880" "5881"

[43] "595" "60" "637" "6442" "6443" "6444"

[49] "6445" "71" "836" "841" "842" "857"

[55] "8672" "940" "941" "942" "958" "959"

##

$`hsa04622_RIG-I-like_receptor_signaling_pathway`

[1] "10010" "1147" "1432" "1540" "1654" "23586" "26007" "29110"

[9] "338376" "340061" "3439" "3440" "3441" "3442" "3443" "3444"

[17] "3445" "3446" "3447" "3448" "3449" "3451" "3452" "3456"

[25] "3467" "3551" "3576" "3592" "3593" "3627" "3661" "3665"

[33] "4214" "4790" "4792" "4793" "5300" "54941" "55593" "5599"

[41] "5600" "5601" "5602" "5603" "56832" "57506" "5970" "6300"

[49] "64135" "64343" "6885" "7124" "7186" "7187" "7189" "7706"

12

http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/GO.db

EnrichmentBrowser

[57] "79132" "79671" "80143" "841" "843" "8517" "8717" "8737"

[65] "8772" "9140" "9474" "9636" "9641" "9755"

Currently, the following set-based enrichment analysis methods are supported
sbeaMethods()

[1] "ora" "safe" "gsea" "gsa" "padog"

[6] "globaltest" "roast" "camera" "gsva" "samgs"

[11] "ebm" "mgsa"

• ORA: Overrepresentation Analysis (simple and frequently used test based on the hy-
pergeometric distribution, see [4] for a critical review),

• SAFE: Significance Analysis of Function and Expression (resampling version of ORA,
implements additional test statistics, e.g. Wilcoxon’s rank sum, and allows to estimate
the significance of gene sets by sample permutation; implemented in the safe package),

• GSEA: Gene Set Enrichment Analysis (frequently used and widely accepted, uses a
Kolmogorov–Smirnov statistic to test whether the ranks of the p-values of genes in a
gene set resemble a uniform distribution [5]),

• PADOG: Pathway Analysis with Down-weighting of Overlapping Genes (incorporates
gene weights to favor genes appearing in few pathways versus genes that appear in
many pathways; implemented in the PADOG package),

• ROAST: ROtAtion gene Set Test (uses rotation instead of permutation for assessment
of gene set significance; implemented in the limma and edgeR packages for microarray
and RNA-seq data, respectively),

• CAMERA: Correlation Adjusted MEan RAnk gene set test (accounts for inter-gene
correlations as implemented in the limma and edgeR packages for microarray and
RNA-seq data, respectively),

• GSA: Gene Set Analysis (differs from GSEA by using the maxmean statistic, i.e. the
mean of the positive or negative part of gene scores in the gene set; implemented in
the GSA package),

• GSVA: Gene Set Variation Analysis (transforms the data from a gene by sample matrix
to a gene set by sample matrix, thereby allowing the evaluation of gene set enrichment
for each sample; implemented in the GSVA package)

• GLOBALTEST: Global testing of groups of genes (general test of groups of genes for
association with a response variable; implemented in the globaltest package),

• SAMGS: Significance Analysis of Microarrays on Gene Sets (extending the SAM method
for single genes to gene set analysis [6]),

• EBM: Empirical Brown’s Method (combines p-values of genes in a gene set using
Brown’s method to combine p-values from dependent tests; implemented in Empirical-
BrownsMethod),

• MGSA: Model-based Gene Set Analysis (Bayesian modeling approach taking set overlap
into account by working on all sets simultaneously, thereby reducing the number of
redundant sets; implemented in mgsa).

See also Appendix A for a comprehensive introduction on underlying statistical concepts.

13

http://bioconductor.org/packages/safe
http://bioconductor.org/packages/PADOG
http://bioconductor.org/packages/limma
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/limma
http://bioconductor.org/packages/edgeR
https://CRAN.R-project.org/package=GSA
http://bioconductor.org/packages/GSVA
http://bioconductor.org/packages/globaltest
http://bioconductor.org/packages/EmpiricalBrownsMethod
http://bioconductor.org/packages/EmpiricalBrownsMethod
http://bioconductor.org/packages/mgsa

EnrichmentBrowser

For demonstration, we perform a basic ORA choosing a significance level α of 0.1
sbea.res <- sbea(method="ora", se=allSE, gs=hsa.gs, perm=0, alpha=0.1)

gsRanking(sbea.res)

DataFrame with 4 rows and 4 columns

GENE.SET NR.GENES NR.SIG.GENES

<character> <numeric> <numeric>

1 hsa05130_Pathogenic_Escherichia_coli_infection 43 5

2 hsa05206_MicroRNAs_in_cancer 133 10

3 hsa04622_RIG-I-like_receptor_signaling_pathway 54 5

4 hsa04670_Leukocyte_transendothelial_migration 94 7

PVAL

<numeric>

1 0.0295

2 0.0419

3 0.0685

4 0.0882

The result of every enrichment analysis is a ranking of gene sets by the corresponding p-value.
The gsRanking function displays only those gene sets satisfying the chosen significance level
α.
While such a ranked list is the standard output of existing enrichment tools, the Enrichment-
Browser package provides visualization and interactive exploration of resulting gene sets far
beyond that point. Using the eaBrowse function creates a HTML summary from which each
gene set can be inspected in detail (this builds on functionality from the ReportingTools
package).
The various options are described in Figure 1.
eaBrowse(sbea.res)

The goal of the EnrichmentBrowser package is to provide frequently used enrichment meth-
ods. However, it is also possible to exploit its visualization capabilities with user-defined
set-based enrichment methods.
This requires to implement a function that takes the characteristic arguments se (expression
data), gs (gene sets), alpha (significance level), and perm (number of permutations).
In addition, it must return a numeric vector ps storing the resulting p-value for each gene set
in gs. The p-value vector must also be named accordingly (i.e. names(ps) == names(gs)).
Let us consider the following dummy enrichment method, which randomly renders five gene
sets significant and the remaining insignificant.
dummySBEA <- function(se, gs, alpha, perm)

{

sig.ps <- sample(seq(0,0.05, length=1000),5)

insig.ps <- sample(seq(0.1,1, length=1000), length(gs)-5)

ps <- sample(c(sig.ps, insig.ps), length(gs))

names(ps) <- names(gs)

return(ps)

}

We can plug this method into sbea as before.

14

http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/ReportingTools
http://bioconductor.org/packages/EnrichmentBrowser

EnrichmentBrowser

Figure 1: ORA result view
For each significant gene set in the ranking, the user can select to view (1) a gene report, that lists all
genes of a set along with fold change and DE p-value, (2) interactive overview plots such as heatmap,
p-value distribution, and volcano plot, (3) the pathway in KEGG with differentially expressed genes high-
lighted in red.

sbea.res2 <- sbea(method=dummySBEA, se=allSE, gs=hsa.gs)

gsRanking(sbea.res2)

DataFrame with 5 rows and 2 columns

GENE.SET

<character>

1 hsa03420_Nucleotide_excision_repair

2 hsa04670_Leukocyte_transendothelial_migration

3 hsa04621_NOD-like_receptor_signaling_pathway

4 hsa04550_Signaling_pathways_regulating_pluripotency_of_stem_cells

5 hsa04514_Cell_adhesion_molecules_(CAMs)

PVAL

<numeric>

1 0.000651

2 0.0143

3 0.0226

4 0.0337

5 0.048

7.2 Network-based enrichment analysis

Having found sets of genes that are differentially regulated in the ALL data, we are now
interested whether these findings can be supported by known regulatory interactions.

15

EnrichmentBrowser

For example, we want to know whether transcription factors and their target genes are ex-
pressed in accordance to the connecting regulations (activation/inhibition). Such information
is usually given in a gene regulatory network derived from specific experiments or compiled
from the literature ([7] for an example).
There are well-studied processes and organisms for which comprehensive and well-annotated
regulatory networks are available, e.g. the RegulonDB for E. coli and Yeastract for S. cere-
visiae. However, there are also cases where such a network is missing. A basic workaround is
to compile a network from regulations in pathway databases such as KEGG.
hsa.grn <- compileGRN(org="hsa", db="kegg")

head(hsa.grn)

FROM TO TYPE

[1,] "10000" "100132074" "-"

[2,] "10000" "1026" "+"

[3,] "10000" "1026" "-"

[4,] "10000" "1027" "-"

[5,] "10000" "10488" "+"

[6,] "10000" "107" "+"

Now, we are able to perform enrichment analysis using the compiled network. Currently, the
following network-based enrichment analysis methods are supported
nbeaMethods()

[1] "ggea" "spia" "pathnet" "degraph" "ganpa"

[6] "cepa" "topologygsa" "netgsa"

• GGEA: Gene Graph Enrichment Analysis (evaluates consistency of known regulatory
interactions with the observed expression data [8]),

• SPIA: Signaling Pathway Impact Analysis (combines ORA with the probability that
expression changes are propagated across the pathway topology; implemented in the
SPIA package),

• PathNet: Pathway Analysis using Network Information (applies ORA on combined
evidence for the observed signal for gene nodes and the signal implied by connected
neighbors in the network; implemented in the PathNet package),

• DEGraph: Differential expression testing for gene graphs (multivariate testing of differ-
ences in mean incorporating underlying graph structure; implemented in the DEGraph
package),

• TopologyGSA: Topology-based Gene Set Analysis (uses Gaussian graphical models to
incorporate the dependence structure among genes as implied by pathway topology;
implemented in the topologyGSA package),

• GANPA: Gene Association Network-based Pathway Analysis (incorporates network-
derived gene weights in the enrichment analysis; implemented in the GANPA package),

• CePa: Centrality-based Pathway enrichment (incorporates network centralities as node
weights mapped from differentially expressed genes in pathways; implemented in the
CePa package),

16

http://bioconductor.org/packages/SPIA
http://bioconductor.org/packages/PathNet
http://bioconductor.org/packages/DEGraph
https://CRAN.R-project.org/package=topologyGSA
https://CRAN.R-project.org/package=GANPA
https://CRAN.R-project.org/package=CePa

EnrichmentBrowser

• NetGSA: Network-based Gene Set Analysis (incorporates external information about
interactions among genes as well as novel interactions learned from data; implemented
in the NetGSA package),

For demonstration, we perform GGEA using the compiled KEGG regulatory network.
nbea.res <- nbea(method="ggea", se=allSE, gs=hsa.gs, grn=hsa.grn)

gsRanking(nbea.res)

DataFrame with 7 rows and 5 columns

GENE.SET NR.RELS RAW.SCORE

<character> <numeric> <numeric>

1 hsa04622_RIG-I-like_receptor_signaling_pathway 37 13.9

2 hsa05416_Viral_myocarditis 7 3.29

3 hsa04390_Hippo_signaling_pathway 63 22.4

4 hsa04210_Apoptosis 54 18.8

5 hsa05217_Basal_cell_carcinoma 17 6.58

6 hsa05134_Legionellosis 20 7.38

7 hsa04520_Adherens_junction 12 4.49

NORM.SCORE PVAL

<numeric> <numeric>

1 0.377 0.000999

2 0.47 0.002

3 0.356 0.003

4 0.348 0.00599

5 0.387 0.00899

6 0.369 0.021

7 0.374 0.038

The resulting ranking lists, for each statistically significant gene set, the number of relations
of the network involving a member of the gene set under study (NR.RELS), the sum of
consistencies over the relations of the set (RAW.SCORE), the score normalized by induced
network size (NORM.SCORE = RAW.SCORE / NR.RELS), and the statistical significance of each
gene set based on a permutation approach.
A GGEA graph for a gene set depicts the consistency of each interaction in the set. Nodes
(genes) are colored according to expression (up-/down-regulated) and edges (interactions)
are colored according to consistency, i.e. how well the interaction type (activation/inhibition)
is reflected in the correlation of the observed expression of both interaction partners.
par(mfrow=c(1,2))

ggeaGraph(

gs=hsa.gs[["hsa05217_Basal_cell_carcinoma"]],

grn=hsa.grn, se=allSE)

ggeaGraphLegend()

17

https://CRAN.R-project.org/package=NetGSA

EnrichmentBrowser

GGEA Graph

FZD6

CTNNB1

WNT1 WNT2B WNT7A WNT5A

AXIN1

LEF1

WNT4 WNT6 WNT8BWNT11 WNT10B WNT2

APC2 APC

FZD2

TCF7

DVL3

GSK3B

GLI1

FZD9

GLI3

FZD5

GLI2

DVL1

FZD7 BMP2

TCF7L2

GGEA graph legend

inhibition |

activation >

EDGE TYPES

(the clearer the color appears, the more significant it is)

inconsistent (blue) > |

consistent (red) > |

EDGE COLORS

(the clearer the color appears, the more significant it is)

down−regulated ●

up−regulated ●

NODE COLORS

As described in the previous section, it is also possible to plug in user-defined network-based
enrichment methods.

18

EnrichmentBrowser

8 Combining results

Different enrichment analysis methods usually result in different gene set rankings for the same
dataset. To compare results and detect gene sets that are supported by different methods,
the EnrichmentBrowser package allows to combine results from the different set-based and
network-based enrichment analysis methods. The combination of results yields a new ranking
of the gene sets under investigation by specified ranking criteria, e.g. the average rank across
methods. We consider the ORA result and the GGEA result from the previous sections and
use the function combResults.
res.list <- list(sbea.res, nbea.res)

comb.res <- combResults(res.list)

The combined result can be detailedly inspected as before and interactively ranked as depicted
in Figure 2.
eaBrowse(comb.res, graph.view=hsa.grn, nr.show=5)

Figure 2: Combined result view
By clicking on one of the columns (ORA.RANK, ..., GGEA.PVAL) the result can be interactively ranked
according to the selected criterion.

19

http://bioconductor.org/packages/EnrichmentBrowser

EnrichmentBrowser

9 Putting it all together

There are cases where it is necessary to perform certain steps of the demonstrated enrichment
analysis pipeline individually. However, it is often more convenient to run the complete
standardized pipeline. This can be done using the all-in-one wrapper function ebrowser. For
example, the result page displayed in Figure 2 can also be produced from scratch via
ebrowser(meth=c("ora", "ggea"),

exprs=exprs.file, cdat=cdat.file, rdat=rdat.file,

org="hsa", gs=hsa.gs, grn=hsa.grn, comb=TRUE, nr.show=5)

10 Advanced: configuration parameters

Similar to R’s options settings, the EnrichmentBrowser uses certain package-wide config-
uration parameters, which affect the way in which analysis is carried out and how results
are displayed. The settings of these parameters can be examined and, to some extent, also
changed using the function configEBrowser. For instance, the default directory where the
EnrichmentBrowser writes results to can be updated via
configEBrowser(key="OUTDIR.DEFAULT", value="/my/out/dir")

and examined via
configEBrowser("OUTDIR.DEFAULT")

[1] "/my/out/dir"

Note that changing these defaults should be done with care, as inappropriate settings might
impair the package’s functionality. The complete list of incorporated configuration parameters
along with their default settings can be inspected via
?configEBrowser

11 For non-R users: command line invocation

The package source contains two scripts in inst/scripts to invoke the EnrichmentBrowser
from the command line using Rscript.
The de_rseq.R script is a lightweight wrapper script to carry out differential expression
analysis of RNA-seq data either based on limma (using the voom-transformation), edgeR, or
DESeq2 .
The eBrowserCMD.R implements the full functionality and allows to carry out the various
enrichment methods and to produce HTML reports for interactive exploration of results.
The inst/scripts folder also contains a README file that comprehensively documents the
usage of both scripts.

20

http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/limma
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2

EnrichmentBrowser

A A primer on terminology and statistical theory

A.1 Where does it all come from?

Test whether known biological functions or processes are over-represented (= enriched) in an
experimentally-derived gene list, e.g. a list of differentially expressed (DE) genes. See [4] for
a critical review.
Example: Transcriptomic study, in which 12,671 genes have been tested for differential ex-
pression between two sample conditions and 529 genes were found DE.
Among the DE genes, 28 are annotated to a specific functional gene set, which contains in
total 170 genes. This setup corresponds to a 2× 2 contingency table,
deTable <-

matrix(c(28, 142, 501, 12000),

nrow = 2,

dimnames = list(c("DE", "Not.DE"),

c("In.gene.set", "Not.in.gene.set")))

deTable

In.gene.set Not.in.gene.set

DE 28 501

Not.DE 142 12000

where the overlap of 28 genes can be assessed based on the hypergeometric distribution.
This corresponds to a one-sided version of Fisher’s exact test, yielding here a significant
enrichment.
fisher.test(deTable, alternative = "greater")

##

Fisher's Exact Test for Count Data

##

data: deTable

p-value = 4.088e-10

alternative hypothesis: true odds ratio is greater than 1

95 percent confidence interval:

3.226736 Inf

sample estimates:

odds ratio

4.721744

This basic principle is at the foundation of major public and commercial enrichment tools such
as DAVID (https://david.ncifcrf.gov) and Pathway Studio (https://www.pathwaystudio.com).
Although gene set enrichment methods have been primarily developed and applied on tran-
scriptomic data, they have recently been modified, extended and applied also in other fields
of genomic and biomedical research. This includes novel approaches for functional enrich-
ment analysis of proteomic and metabolomic data as well as genomic regions and disease
phenotypes [9, 10, 11, 12].

21

https://david.ncifcrf.gov
https://www.pathwaystudio.com

EnrichmentBrowser

A.2 Gene sets, pathways & regulatory networks

Gene sets are simple lists of usually functionally related genes without further specification
of relationships between genes.
Pathways can be interpreted as specific gene sets, typically representing a group of genes
that work together in a biological process. Pathways are commonly divided in metabolic and
signaling pathways. Metabolic pathways such as glycolysis represent biochemical substrate
conversions by specific enzymes. Signaling pathways such as the MAPK signaling pathway
describe signal transduction cascades from receptor proteins to transcription factors, resulting
in activation or inhibition of specific target genes.
Gene regulatory networks describe the interplay and effects of regulatory factors (such as
transcription factors and microRNAs) on the expression of their target genes.

A.3 Resources

GO (http://www.geneontology.org) and KEGG (http://www.genome.jp/kegg) annotations
are most frequently used for the enrichment analysis of functional gene sets. Despite an
increasing number of gene set and pathway databases, they are typically the first choice due
to their long-standing curation and availability for a wide range of species.
The Gene Ontology (GO) consists of three major sub-ontologies that classify gene products
according to molecular function (MF), biological process (BP) and cellular component (CC).
Each ontology consists of GO terms that define MFs, BPs or CCs to which specific genes are
annotated. The terms are organized in a directed acyclic graph, where edges between the
terms represent relationships of different types. They relate the terms according to a parent-
child scheme, i.e. parent terms denote more general entities, whereas child terms represent
more specific entities.
The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a collection of manually drawn
pathway maps representing molecular interaction and reaction networks. These pathways
cover a wide range of biochemical processes that can be divided in 7 broad categories:
metabolism, genetic and environmental information processing, cellular processes, organis-
mal systems, human diseases, and drug development. Metabolism and drug development
pathways differ from pathways of the other 5 categories by illustrating reactions between
chemical compounds. Pathways of the other 5 categories illustrate molecular interactions
between genes and gene products.

A.4 Gene set analysis vs. gene set enrichment analysis

The two predominantly used enrichment methods are:
• Overrepresentation analysis (ORA), testing whether a gene set contains disproportional

many genes of significant expression change, based on the procedure outlined in sec-
tion A.1,

• Gene set enrichment analysis (GSEA), testing whether genes of a gene set accumulate
at the top or bottom of the full gene vector ordered by direction and magnitude of
expression change [5].

22

http://www.geneontology.org
http://www.genome.jp/kegg

EnrichmentBrowser

However, the term gene set enrichment analysis nowadays subsumes a general strategy im-
plemented by a wide range of methods [13]. Those methods have in common the same goal,
although approach and statistical model can vary substantially [4, 14].
To better distinguish from the specific method, some authors use the term gene set analysis
to denote the general strategy. However, there is also a specific method of this name [15].

A.5 Underlying null: competitive vs. self-contained

Goeman and Buehlmann, 2007, classified existing enrichment methods into competitive and
self-contained based on the underlying null hypothesis [4].

• Competitive null hypothesis: the genes in the set of interest are at most as often DE
as the genes not in the set,

• Self-contained null hypothesis: no genes in the set of interest are DE.
Although the authors argue that a self-contained null is closer to the actual question of
interest, the vast majority of enrichment methods is competitive.
Goeman and Buehlmann further raise several critical issues concerning the 2× 2 ORA:

• rather arbitrary classification of genes in DE / not DE,
• based on gene sampling, although sampling of subjects is appropriate,
• unrealistic independence assumption between genes, resulting in highly anti-conservative

p-values.
With regard to these statistical concerns, GSEA is considered superior:

• takes all measured genes into account,
• subject sampling via permutation of class labels,
• the incorporated permutation procedure implicitly accounts for correlations between

genes.
However, the simplicity and general applicability of ORA is unmet by subsequent methods
improving on these issues. For instance, GSEA requires the expression data as input, which
is not available for gene lists derived from other experiment types. On the other hand, the
involved sample permutation procedure has been proven inaccurate and time-consuming [15,
16, 17].

A.6 Generations: ora, fcs & topology-based

Khatri et al., 2012, have taken a slightly different approach by classifying methods along the
timeline of development into three generations [14]:

1. Generation: ORA methods based on the 2× 2 contingency table test,
2. Generation: functional class scoring (FCS) methods such as GSEA, which compute

gene set (= functional class) scores by summarizing per-gene DE statistics,
3. Generation: topology-based methods, explicitly taking into account interactions be-

tween genes as defined in signaling pathways and gene regulatory networks ([8] for an
example).

23

EnrichmentBrowser

Although topology-based (also: network-based) methods appear to be most realistic, their
straightforward application can be impaired by features that are not detectable on the
transcriptional level (such as protein-protein interactions) and insufficient network knowl-
edge [7, 18].
Given the individual benefits and limitations of existing methods, cautious interpretation of
results is required to derive valid conclusions. Whereas no single method is best suited for
all application scenarios, applying multiple methods can be beneficial. This has been shown
to filter out spurious hits of individual methods, thereby reducing the outcome to gene sets
accumulating evidence from different methods [19, 20].

B Frequently asked questions

1. How to cite the EnrichmentBrowser?

Geistlinger L, Csaba G and Zimmer R. Bioconductor’s EnrichmentBrowser: seamless
navigation through combined results of set- & network-based enrichment analysis. BMC
Bioinformatics, 17:45, 2016.

2. Is it possible to apply the EnrichmentBrowser to simple gene lists?

Enrichment methods implemented in the EnrichmentBrowser are, except for ORA,
expression-based (and also draw their strength from that). The set-based methods
GSEA, SAFE, and SAMGS use sample permutation, involving recomputation of dif-
ferential expression, for gene set significance estimation, i.e. they require the complete
expression matrix. The network-based methods require measures of differential expres-
sion such as fold change and p-value to score interactions of the network. In addition,
visualization of enriched gene sets is explicitly designed for expression data. Thus, for
simple gene list enrichment, tools like DAVID (https://david.ncifcrf.gov) and GeneAn-
alytics (http://geneanalytics.genecards.org) are more suitable, and it is recommended
to use them for this purpose.

References

[1] Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, et al. Gene expression profile of
adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with
different response to therapy and survival. Blood, 103(7):2771–8, 2004.

[2] Gentleman R, Carey V, Huber W, Irizarry R, and Dudoit S. Bioinformatics and
computational biology solutions using R and Bioconductor. Springer, New York, 2005.

[3] Himes BE, Jiang X, Wagner P, Hu R, Wang Q, et al. RNA-Seq transcriptome profiling
identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine
function in airway smooth muscle cells. PLoS One, 9(6):e99625, 2014.

[4] Goeman JJ and Buehlmann P. Analyzing gene expression data in terms of gene sets:
methodological issues. Bioinformatics, 23(8):980–7, 2007.

24

http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/EnrichmentBrowser
https://david.ncifcrf.gov
http://geneanalytics.genecards.org

EnrichmentBrowser

[5] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci USA, 102(43):15545–50, 2005.

[6] Dinu I, Potter JD, Mueller T, Liu Q, Adewale AJ, et al. Improving gene set analysis of
microarray data by SAM-GS. BMC Bioinformatics, 8:242, 2007.

[7] Geistlinger L, Csaba G, Dirmeier S, Kueffner R, and Zimmer R. A comprehensive gene
regulatory network for the diauxic shift in Saccharomyces cerevisiae. Nucleic Acids
Res, 41(18):8452–63, 2013.

[8] Geistlinger L, Csaba G, Kueffner R, Mulder N, and Zimmer R. From sets to graphs:
towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics,
27(13):i366–73, 2011.

[9] Lavallee-Adam M and Yates JR. Using PSEA-Quant for protein set enrichment
analysis of quantitative mass spectrometry-based proteomics. Curr Protoc
Bioinformatics, 53:13.28.1–16, 2016.

[10] Chagoyen M, Lopez-Ibanez J, and Pazos F. Functional analysis of metabolomics data.
Methods Mol Biol, 1415:399–406, 2016.

[11] McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, et al. GREAT improves
functional interpretation of cis-regulatory regions. Nat Biotechnol, 28(5):495–501,
2010.

[12] Ried JS, Döring A, Oexle K, Meisinger C, Winkelmann J, et al. PSEA: Phenotype set
enrichment analysis–a new method for analysis of multiple phenotypes. Genet
Epidemiol, 36(3):244–52, 2012.

[13] Huang da W, Sherman BT, and Lempicki RA. Bioinformatics enrichment tools: paths
toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res,
37(1):1–13, 2009.

[14] Khatri P, Sirota M, and Butte AJ. Ten years of pathway analysis: current approaches
and outstanding challenges. PLoS Comput Biol, 8(2):e1002375, 2012.

[15] Efron B and Tibshirani R. On testing the significance of sets of genes. Ann Appl Stat,
1(1):107–129, 2007.

[16] Phipson B and Smyth GK. Permutation p-values should never be zero: calculating
exact p-values when permutations are randomly drawn. Stat Appl Genet Mol Biol,
9:A39, 2010.

[17] Larson JL and Owen A. Moment based gene set tests. BMC Bioinformatics, 16:132,
2015.

[18] Bayerlova M, Jung K, Kramer F, Klemm F, Bleckmann A, and Beissbarth T.
Comparative study on gene set and pathway topology-based enrichment methods.
BMC Bioinformatics, 16:334, 2015.

[19] Geistlinger L, Csaba G, and Zimmer R. Bioconductor’s EnrichmentBrowser: seamless
navigation through combined results of set- & network-based enrichment analysis.
BMC Bioinformatics, 17:45, 2016.

[20] Alhamdoosh M, Ng M, Wilson NJ, Sheridan JM, Huynh H, et al. Combining multiple
tools outperforms individual methods in gene set enrichment analyses. Bioinformatics,
33(3):414–24, 2017.

25

	1 Introduction
	2 Reading expression data from file
	3 Types of expression data
	3.1 Microarray data
	3.2 RNA-seq data

	4 Normalization
	5 Differential expression
	6 ID mapping
	7 Enrichment analysis
	7.1 Set-based enrichment analysis
	7.2 Network-based enrichment analysis

	8 Combining results
	9 Putting it all together
	10 Advanced: configuration parameters
	11 For non-R users: command line invocation
	A A primer on terminology and statistical theory
	A.1 Where does it all come from?
	A.2 Gene sets, pathways & regulatory networks
	A.3 Resources
	A.4 Gene set analysis vs. gene set enrichment analysis
	A.5 Underlying null: competitive vs. self-contained
	A.6 Generations: ora, fcs & topology-based

	B Frequently asked questions

