
1This document
used the vignette
from Bioconductor
package DESeq2 as
knitr template

Inferring and visualising the hierar-
chical tree structure of Single-Cell RNA-
seq Data data with the cellTree package

David duVerle & Koji Tsuda
[1em] Graduate School of Frontier Sciences, the University of Tokyo
∗Correspondence to dave (at) cb.k.u-tokyo.ac.jp

October 29, 2019

Abstract

Single-cell RNA sequencing, one of the most significant advances in recent
genomics [1], is becoming increasingly common, providing unique insights into
the exact gene-expression snapshots of cells throughout biological processes
such as cell differentiation or tumorigenesis.
A number of methods have been suggested to help organise and visualise the
structure of cells measured through single-cell sequencing [2, 3], yet none seem
to be able to accurately capture complex differentiation paths over time, or
offer a satisfying explanation for the low-dimensional support used to infer the
cell distances.
This R package implements a new statistical method based on topic modelling
techniques, for inferring and visualising the tree structure of single-cell RNA-seq
samples and interpreting the sets of genes driving transitions between states.

cellTree version: 1.17.0 1

http://bioconductor.org/packages/DESeq2
https://CRAN.R-project.org/package=knitr

Single-Cell RNA-seq Data with cellTree

Contents

1 Introduction . 2

2 Installing the cellTree package. 3

3 Preparing the Gene Expression Data Input 4

4 Fitting LDA Model . 4

4.1 Using Latent Dirichlet Allocation for Gene Expression
Data . 4

4.2 Choosing the Number of Topics 5

4.3 Computing LDA Model Fit 6

5 Building a Backbone Tree 7

6 Gene Set Enrichment with Gene Ontologies 15

7 Result Summary . 18

8 Session Info . 19

1 Introduction

When considering a number of single-cell expression measurements taken over
time (e.g during cell differentiation) or space (e.g. with samples taken across
similar tissues), we expect specific pathways, and the genes that compose them,
to be more or less active based on the exact state of the cell sampled. This
leads us to hypothesise the existence of (possibly overlapping) sets of genes,
representing groups of pathways and indirectly characterising specific biological
processes under way at sampling time.
In trying to identify the structure connecting these cell measurements, we there-
fore make the assumption that there exist a latent gene group structure that
explains the similarities between cell measurements. Such a (low-dimensional)
group structure would additionally provides a support for dimension-reduction
of the overall data set that we expect to be both vastly more accurate and more
semantically-useful than other statistical procedures such as PCA, ICA or MDS.

2

Single-Cell RNA-seq Data with cellTree

We borrowed a method from the field of natural language processing known
as Latent Dirichlet Allocation (itself part of the more general field of research
of ‘topic modelling’) to identify this group structure and use it to build a tree
structure connecting all cells. In addition to wrapping existing inference methods
in a ‘bioinformatics-friendly’ package, we added a number of functions to take
advantage and visualise the fitted model.
Principally, we introduced “backbone trees”, a new type of tree structure specif-
ically designed to easily visualise cells along complex differentiation paths, and
proposed a heuristic implementation to estimate such a tree from the distance
matrix obtained through the fitted model.
Additionally, we implemented a pipeline to run gene set enrichment analysis
on the different LDA “topics”, using Gene Ontology terms. Results can be
visualised in the form of annotated tables or subgraph of the Gene Ontology
DAG.
All tabular results can be exported to LATEX, for convenient re-use in scientific
communication.

2 Installing the cellTree package

cellTree requires the following CRAN-R packages: topicmodels, slam, maptpx ,
igraph, xtable, Rgraphviz and gplots, along with the Bioconductor package:
topGO.
Installing cellTree from Bioconductor will install all these dependencies:

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")

BiocManager::install("cellTree")

The documentation’s examples as well as this vignette’s code will further require
Bioconductor packages: HSMMSingleCell , org.Hs.eg.db and biomaRt:

BiocManager::install(c("HSMMSingleCell", "org.Hs.eg.db", "biomaRt"))

Then load the package with:

library(cellTree)

3

https://CRAN.R-project.org/package=topicmodels
https://CRAN.R-project.org/package=slam
https://CRAN.R-project.org/package=maptpx
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=xtable
https://CRAN.R-project.org/package=Rgraphviz
https://CRAN.R-project.org/package=gplots
http://bioconductor.org/packages/topGO
http://bioconductor.org/packages/HSMMSingleCell
http://bioconductor.org/packages/org.Hs.eg.db
http://bioconductor.org/packages/biomaRt

Single-Cell RNA-seq Data with cellTree

3 Preparing the Gene Expression Data In-
put

The principal input to cellTree is a matrix of gene expression values, with genes
as rows and cells as columns. Both gene names (preferably in HGNC format)
and cell identifiers should be present as rownames and colnames for the matrix.
In this vignette, we will be using RNA-seq data for human skeletal muscle
myoblasts (HSMM) compiled in the HSMMSingleCell package:

load HSMMSingleCell package and load the data set:

library(HSMMSingleCell)

data(HSMM_expr_matrix)

Total number of genes * cells:

dim(HSMM_expr_matrix)

[1] 47192 271

Unlike other cell ordering methods, cellTree’s functions scale relatively well
to very-high-dimensional data, and it is therefore not particularly essential to
reduce the set of genes selected. However, the default pipeline will automatically
apply a log transformation and remove low-variance values from the data set.
This can be disabled if the data is already treated or if you would prefer to do
your own treatment (see the documentation for compute.lda).

4 Fitting LDA Model

4.1 Using Latent Dirichlet Allocation for Gene Expres-
sion Data

The Latent Dirichlet Allocation (LDA; [4]) model is a Bayesian mixture model
initially developed for the analysis of text documents, that allows sets of obser-
vations to be explained by unobserved groups that explain why some parts of
the data are similar. In natural language processing, given a set of documents
and word-occurence counts for each documents, the model assumes that each
document is a mixture of topics (with a Dirichlet prior) and each word is the
result of one of the document’s topic (with a Dirichlet prior on the per-topic
word distribution).

4

http://bioconductor.org/packages/HSMMSingleCell

Single-Cell RNA-seq Data with cellTree

For an in-depth explanation of the mathematics behind the general LDA model,
we recommend consulting David Blei’s original paper [4]. For details on the
different inference methods and their implementation, please consult the docu-
mentation and vignettes for the topicmodels and maptpx packages, along with
their companion publications [5, 6].
In the context of single-cell gene expression analysis, cells play the role of ‘docu-
ments’ and discretised gene expression levels stand for ‘word-occurence counts’.
The fitted LDA model for our data is therefore composed of a set of topic
distributions for each cell, and per-topic gene distributions. The per-cell topic
histograms can then be used as a low-dimension support to compute cell dis-
tances and build a structured representation of the cell hierarchy.

4.2 Choosing the Number of Topics

The main parameter to the LDA fitting procedure is the desired number of
topics: k, (best values for other hyper-parameters are automatically picked by
the different fitting methods). As often with such models, a large number of
topics (and therefore a more complex statistical model) can lead to overfitting,
and it is therefore preferable to use the smallest possible number that provides
a good explanation of the data.
Because of the loose significance of the concept of ‘topics’ in the context of
gene expression in a cell, it is difficult to give a reliable estimate of the ideal
number, based on biological knowledge alone. A good rule of thumb is that the
number of topics should somewhat match the number of major processes (e.g.
differentiation steps) undertaken by the cells during the experiment. During our
own experiments with a number of single-cell time-series and tissue-based data
sets, we found that the optimal number of topics generally stayed between 3
and 7.
The generally-recommended method to select a number of topics is to use cross-
validation with different values of k, looking at the likelihood for each topic
number. However, the computation time for such a method can be prohibitive
on large data sets and large range of topic numbers. For convenience, we provide
a wrapper to the maptpx implementation that uses Matthew Taddy’s ingenious
method for model selection through joint MAP estimation [6]: as it fits models
for iteratively larger number of topics (using the previous fit’s residuals as a
basis), this method can exhaustively look at a large range of topic numbers in
considerably less time than it takes other methods.

5

https://CRAN.R-project.org/package=topicmodels
https://CRAN.R-project.org/package=maptpx
https://CRAN.R-project.org/package=maptpx

Single-Cell RNA-seq Data with cellTree

One way to check the sparsity of the model based on biological knowledge, is to
examine the gene set enrichment for the different topics (see 6): if two topics
share a large amount of identical GO terms, it is quite possible that they are
redundant and the model could be made sparser.

4.3 Computing LDA Model Fit

Using the HSMM data set previously loaded, we can use maptpx to automat-
ically select the best number of topics and return the fitted model for that
number:

Run LDA inference using 'maptpx' method

finding best number of topics k between 3 and 8:

lda.results = compute.lda(HSMM_expr_matrix, k.topics=3:8, method="maptpx")

The argument k.topics can only be sent a vector of integers when method

argument is set to “maptpx” (other methods must be sent a scalar value).
Optionally, we could run the (much slower, though potentially more accurate)
collapsed Gibbs sampling method:

Run LDA inference using 'Gibbs' method for k = 6 topics:

lda.results = compute.lda(HSMM_expr_matrix, k.topics=6, method="Gibbs")

In order to perform further analysis on the fitted LDA model, it is be prefer-
able for the row names of the input data matrix to contain HGNC-conformant
gene names. This can be done by using the biomaRt package to convert the
original ENSEMBL gene names of the HSMMSingleCell package to HGCN (a
pre-computed set can also be used: see following paragraph):

HSMM_expr_matrix.hgnc = HSMM_expr_matrix

library("biomaRt")

ensembl.ids = sapply(strsplit(rownames(HSMM_expr_matrix), split=".",fixed=TRUE),

"[",

1)

ensembl.mart = useMart(host="www.ensembl.org",

"ENSEMBL_MART_ENSEMBL",

dataset = "hsapiens_gene_ensembl")

gene.map = getBM(attributes = c("ensembl_gene_id", "entrezgene", "hgnc_symbol"),

filters = "ensembl_gene_id",

values = ensembl.ids,

6

https://CRAN.R-project.org/package=maptpx
http://bioconductor.org/packages/biomaRt
http://bioconductor.org/packages/HSMMSingleCell

Single-Cell RNA-seq Data with cellTree

mart = ensembl.mart)

idx = match(ensembl.ids, gene.map$ensembl_gene_id)

hgnc.ids = gene.map$hgnc_symbol[idx]

has.hgnc.ids = !is.na(hgnc.ids)&(hgnc.ids!="")

rownames(HSMM_expr_matrix.hgnc)[has.hgnc.ids] = hgnc.ids[has.hgnc.ids]

HSMM_lda_model = compute.lda(HSMM_expr_matrix.hgnc, k.topics=6)

For convenience, we have packaged a pre-computed LDA model that already
includes converted gene names:

Load pre-computed LDA model for skeletal myoblast RNA-Seq data

from HSMMSingleCell package:

data(HSMM_lda_model)

Number of topics of fitted model:

print(HSMM_lda_model$K)

[1] 5

Model uses HGCN gene names:

head(rownames(HSMM_lda_model$theta))

[1] "TSPAN6" "DPM1" "SCYL3" "C1orf112" "CFH" "FUCA2"

5 Building a Backbone Tree

Once a model has been fitted to the data using compute.lda, it is possible to
compute pairwise distances for all cells, based on per-cell topic histograms (we
use the Chi-square distance):

Compute pairwise distance between cells

based on topic distributions in the fitted model:

dists = get.cell.dists(HSMM_lda_model)

print(dists[1:5,1:5])

T0_CT_A01 T0_CT_A03 T0_CT_A05 T0_CT_A06 T0_CT_A07

T0_CT_A01 0.000 0.578 0.645 0.262 0.598

T0_CT_A03 0.578 0.000 0.386 0.401 0.462

T0_CT_A05 0.645 0.386 0.000 0.566 0.441

T0_CT_A06 0.262 0.401 0.566 0.000 0.539

7

Single-Cell RNA-seq Data with cellTree

T0_CT_A07 0.598 0.462 0.441 0.539 0.000

This distance matrix can be used with methods such as hclust, to perform hi-
erarchical cluster analysis, or with various tree-building algorithm, to identifying
the underlying tree structure of the cells.
In most cases, the cells measured are taken in groups of similar samples (e.g. at
specific time-points) that spread along a continuum between the various groups.
We expect a small (or at least smaller) variance within groups, and average short
distance between samples belonging to neighbouring groups (in time or space).
One natural way to visualise such a structure is using a minimum spanning tree
(MST).
In order to help properly root the tree, we can provide additional information to
the function, in the form of group labels for each cell batch. In this instance,
cells were measured at 4 separate time points (0, 24, 48 and 72 hours):

Recover sampling time point for each cell:

library(HSMMSingleCell)

data(HSMM_sample_sheet)

days.factor = HSMM_sample_sheet$Hours

days = as.numeric(levels(days.factor))[days.factor]

Our grouping annotation (in hours):

print(unique(days))

[1] 0 24 48 72

With this time annotation, we can then compute the rooted MST:

compute MST from a fitted LDA model:

mst.tree = compute.backbone.tree(HSMM_lda_model, days, only.mst=TRUE)

Using start group: 0 (1)

Using rooting method: center.start.group

Using root vertex: 4

Returning Minimum Spanning Tree

plot the tree (showing topic distribution for each cell):

mst.tree.with.layout = ct.plot.topics(mst.tree)

Computing tree layout...

8

Single-Cell RNA-seq Data with cellTree

To have a better idea of the accuracy of the tree representation, we can plot it
with the time group for each cell:

plot the tree (showing time point for each cell):

mst.tree.with.layout = ct.plot.grouping(mst.tree)

Computing tree layout...

9

Single-Cell RNA-seq Data with cellTree

As we can see, the inferred tree structure of the cells is somewhat consistent
with the time points (i.e. generally follows a chronological order).
However, the MST approach relies to some extent on the assumption that cell
distances are uniformly distributed, whereas in fact, we can expect cells inside
a same group to have much lower variance than across groups.
The “ideal” structure of a typical cell differentiation experiment would look like
a single path from one cell to the next or, in the case of subtype differentiation,
a tree with a very small number of branches. Of course, because the samples
do in fact represent separate cells, rather than the evolution of a single cell,
we must expect small variations around such an idealised continuum. Our
suggested approach is to identify cells that are most representative (at the gene
expression level) of the biological process continuum, to create a “backbone”,
with all remaining cells at reasonably small distances from the backbone.
In more formal terms:

10

Single-Cell RNA-seq Data with cellTree

Considering a set of vertices V and a distance function over all pairs of vertices:
d : V × V → R+, we call backbone tree a graph, T with backbone B, such
that:

• T is a tree with set of vertices V and edges E.
• B is a tree with set of vertices VB ⊆ V and edges EB

E.
• All vertices in V \VB are less than distance δ to a vertex in the backbone

tree B: ∀v ∈ V \ VB, ∃vB ∈ VB such that d(v, vb) ≤ δ.
• All ‘vertebrae’ vertices of T (v ∈ V \VB) are connected by a single edge to

the closest vertex in the backbone tree: ∀v ∈ V \ VB,∀v′ ∈ V : (v, v′) ∈
E ⇐⇒ v′ = argminv′∈VB

d(v, v′).
In this instance, we relax the last condition to cover only “most” non-backbone
vertices, allowing for a variable proportion of outliers at distance > δ from any
vertices in VB.
We can then define an optimal backbone tree, T ∗ to be a backbone tree that
minimises the sum of weighted edges in its backbone subtree:

T ∗ = argminT

∑
e∈EB

d(e) 1

Finding such a tree can be easily shown to be NP-Complete (by reduction to the
Vertex Cover problem), but we developed a fast heuristic relying on Minimum
Spanning Tree to produce a reasonable approximation. The resulting quasi-
optimal backbone tree (simply referred to as ‘the’ backbone tree hereafter) gives
a clear hierarchical representation of the cells relationship: the objective function
puts pressure on finding a (small) group of prominent cells (the backbone) that
are good representatives of major steps in the cell evolution (in time or space),
while remaining cells are similar enough to their closest representative for their
difference to be ignored.
Backbone trees provides a very clear visualisation of overall cell differentiation
paths (including potential differentiation into sub-types):

compute backbone tree from a fitted LDA model:

b.tree = compute.backbone.tree(HSMM_lda_model, days)

Using start group: 0 (1)

Using rooting method: center.start.group

Using root vertex: 4

Adding branch #1:

11

Single-Cell RNA-seq Data with cellTree

[1] 65 53 45 2 55 47 57 48 44 7 19 25 69 66 9 63 18 62 51

[20] 56 16 70 136 133 143 89 78 140 94 100 177 194 141 199 201 181 161 204

[39] 225 236 255 247 246 233 229 259 258 146 235 159 185 191 216 166 149 83 168

[58] 158 8

Using branch width: 0.927 (width.scale.factor: 1.2)

Outliers: 1

Total number of branches: 1 (forks: 0)

Backbone fork merge (width: 0.927): 60 -> 60

Ranking all cells...

plot the tree (showing time label for each cell):

b.tree.with.layout = ct.plot.grouping(b.tree)

Computing tree layout...

In this plot, each backbone cell is represented as a larger disk, with its closest
cells around it as smaller disks.

12

Single-Cell RNA-seq Data with cellTree

The backbone tree algorithm correctly finds the forked structure we expect in
this particular instance, where proliferating cells eventually separate into intersti-
tial mesenchymal and differentiating myoblasts [7]. However, we may expect a
longer common trunk at the beginning of the experiment. This can be adjusted
by passing a larger width.scale.factor argument (default is 1.2):

compute backbone tree from a fitted LDA model:

b.tree = compute.backbone.tree(HSMM_lda_model, days, width.scale.factor=1.5)

Using start group: 0 (1)

Using rooting method: center.start.group

Using root vertex: 4

Adding branch #1:

[1] 65 53 45 2 55 47 57 48 44 7 19 25 69 66 9 63 18 62 51

[20] 56 16 70 136 133 143 89 78 140 94 100 177 194 141 199 201 181 161 204

[39] 225 236 255 247 246 233 229 259 258 146 235 159 185 191 216 166 149 83 168

[58] 158 8

Using branch width: 1.16 (width.scale.factor: 1.5)

Outliers: 0

Total number of branches: 1 (forks: 0)

Backbone fork merge (width: 1.16): 60 -> 60

Ranking all cells...

plot the tree (showing time label for each cell):

b.tree.with.layout = ct.plot.grouping(b.tree)

Computing tree layout...

13

Single-Cell RNA-seq Data with cellTree

The width.scale.factor will affect what the backbone tree construction algo-
rithm consider to be “close enough” cells: larger values will lead to less branches
and more shared branch segments.
Finally, we can plot the backbone tree with the topic distribution for each cell:

plot the tree (showing topic distribution for each cell):

b.tree.with.layout = ct.plot.topics(b.tree)

Computing tree layout...

14

Single-Cell RNA-seq Data with cellTree

6 Gene Set Enrichment with Gene Ontolo-
gies

Because of their Bayesian mixture nature, and despite the slightly misleading
name, ‘topics’ obtained through LDA fitting do not always match clear and
coherent groupings (biological or otherwise), depending on sparsity of model
and complexity of the input data. In particular, slightly less sparse models (with
higher number of topics) can lead to better cell distance computation, but be
harder to interpret.
In most cases, however, enrichment analysis of per-topic gene distribution can
help characterise a given topic and its role in the cell’s process, and even provide
potential biological insight, by outlining the general processes most active in
specific sections of the cell tree.

15

Single-Cell RNA-seq Data with cellTree

Topic analysis is conducted using Gene Ontology (GO) terms [8]. For each topic,
cellTree orders genes by their per-topic probability and uses a Kolmogorov-
Smirnov test to compute a p-value on the matching nodes in the GO graph.
Three annotation categories are available: biological processes, cellular compo-
nents and molecular functions.
To be able to map genes to GO terms, cellTree needs the relevant species
database, e.g. org.Hs.eg.db for Homo Sapiens or org.Mm.eg.db for Mus Mus-
culus:

Load GO mappings for human:

library(org.Hs.eg.db)

We can then compute significantly enriched sets for each topic:

Compute GO enrichment sets (using the Cellular Components category)

for each topic

go.results = compute.go.enrichment(HSMM_lda_model,

org.Hs.eg.db, ontology.type="CC",

bonferroni.correct=TRUE, p.val.threshold=0.01)

Print ranked table of significantly enriched terms for topic 1

that do not appear in other topics:

go.results$unique[[1]]

GO.ID Term Total p-Value

17 GO:0000777 condensed chromosome kinetochore 88 4.5e-09

18 GO:0005813 centrosome 411 9.0e-09

24 GO:0005732 small nucleolar ribonucleoprotein complex 20 3.4e-07

30 GO:0000784 nuclear chromosome, telomeric region 93 7.5e-07

32 GO:0005876 spindle microtubule 54 1.3e-06

37 GO:0005759 mitochondrial matrix 387 4.2e-06

40 GO:0005688 U6 snRNP 8 5.1e-06

41 GO:0000922 spindle pole 136 5.7e-06

42 GO:0005689 U12-type spliceosomal complex 26 8.4e-06

43 GO:0000785 chromatin 379 9.5e-06

During enrichment testing, you can have the function plot and output a sub-
graph of significantly enriched terms for each topic, by using the dag.file.prefix
argument:

Compute GO enrichment sets (using the Biological Process category)

for each topic and saves DAG plots to files:

go.results.bp = compute.go.enrichment(HSMM_lda_model,

16

http://bioconductor.org/packages/org.Hs.eg.db
http://bioconductor.org/packages/org.Mm.eg.db

Single-Cell RNA-seq Data with cellTree

org.Hs.eg.db, ontology.type="BP",

bonferroni.correct=TRUE, p.val.threshold=0.01,

dag.file.prefix="hsmm_go_")

A useful way to visualise GO results is by plotting the subgraph of all enriched
terms, coloured according to topic, using function ct.plot.go.dag:

plot GO sub-DAG for topics 1 to 3:

go.dag.subtree = ct.plot.go.dag(go.results,

up.generations = 2,

only.topics=c(1:3))

Terms that are enriched for multiple topics are coloured with a mixture of the
topics involved (weighted by their significance), making it easy to tell the terms
that are exclusive to a small number of topics.
It is also possible to export the entire set of GO enrichment tables to a self-
contained LATEXdocument by using go.results.to.latex.

17

Single-Cell RNA-seq Data with cellTree

7 Result Summary

In addition to topic and grouping plotting, cellTree can output a useful ranked
table of all cells in the data set, ordered along the cell tree (non-backbone cells
are placed using interpolation between the nearest backbone cells).

Generate table summary of cells, ranked by tree position:

cell.table = cell.ordering.table(b.tree)

Print first 5 cells:

cell.table[1:5,]

branch node.label cell.name cell.group main.topic topics

[1,] "1" 4 "T0_CT_A06" 0 1 Numeric,5

[2,] "1" 40 "T0_CT_E08" 0 1 Numeric,5

[3,] "1" 13 "T0_CT_B08" 0 1 Numeric,5

[4,] "1" 242 "T72_CT_C11" 72 1 Numeric,5

[5,] "1" 64 "T0_CT_H02" 0 5 Numeric,5

There too, an option to create a self-contained LATEXversion is available:

Generate table summary of cells, ranked by tree position:

cell.table = cell.ordering.table(b.tree,

write.to.tex.file="cell_summary.tex")

References

[1] Antoine-Emmanuel Saliba, Alexander J Westermann, Stanislaw A Gorski,
and Jörg Vogel. Single-cell rna-seq: advances and future challenges.
Nucleic acids research, page gku555, 2014.

[2] Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel,
Shuqiang Li, Michael Morse, Niall J Lennon, Kenneth J Livak, Tarjei S
Mikkelsen, and John L Rinn. The dynamics and regulators of cell fate
decisions are revealed by pseudotemporal ordering of single cells. Nature
biotechnology, 32(4):381–386, 2014.

[3] Miguel Juliá, Amalio Telenti, and Antonio Rausell. Sincell: an
r/bioconductor package for statistical assessment of cell-state hierarchies
from single-cell rna-seq. Bioinformatics, page btv368, 2015.

18

Single-Cell RNA-seq Data with cellTree

[4] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet
allocation. the Journal of machine Learning research, 3:993–1022, 2003.

[5] Kurt Hornik and Bettina Grün. topicmodels: An r package for fitting topic
models. Journal of Statistical Software, 40(13):1–30, 2011.

[6] Matthew A Taddy. On estimation and selection for topic models. arXiv
preprint arXiv:1109.4518, 2011.

[7] Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel,
Shuqiang Li, Michael Morse, Niall J Lennon, Kenneth J Livak, Tarjei S
Mikkelsen, and John L Rinn. Pseudo-temporal ordering of individual cells
reveals dynamics and regulators of cell fate decisions. Nature
biotechnology, 32(4):381, 2014.

[8] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein,
Heather Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S
Dwight, Janan T Eppig, et al. Gene ontology: tool for the unification of
biology. Nature genetics, 25(1):25–29, 2000.

8 Session Info

sessionInfo()

R Under development (unstable) (2019-10-24 r77329)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 18.04.3 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.11-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.11-bioc/R/lib/libRlapack.so

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

19

Single-Cell RNA-seq Data with cellTree

##

other attached packages:

[1] org.Hs.eg.db_3.10.0 HSMMSingleCell_1.5.0 cellTree_1.17.0

[4] topGO_2.39.0 SparseM_1.77 GO.db_3.10.0

[7] AnnotationDbi_1.49.0 IRanges_2.21.0 S4Vectors_0.25.0

[10] Biobase_2.47.0 graph_1.65.0 BiocGenerics_0.33.0

[13] knitr_1.25

##

loaded via a namespace (and not attached):

[1] Rcpp_1.0.2 compiler_4.0.0 pillar_1.4.2 BiocManager_1.30.9

[5] highr_0.8 bitops_1.0-6 tools_4.0.0 zeallot_0.1.0

[9] digest_0.6.22 bit_1.1-14 lattice_0.20-38 RSQLite_2.1.2

[13] evaluate_0.14 memoise_1.1.0 tibble_2.1.3 pkgconfig_2.0.3

[17] rlang_0.4.1 igraph_1.2.4.1 DBI_1.0.0 yaml_2.2.0

[21] xfun_0.10 stringr_1.4.0 caTools_1.17.1.2 gtools_3.8.1

[25] vctrs_0.2.0 grid_4.0.0 bit64_0.9-7 maptpx_1.9-2

[29] rmarkdown_1.16 gdata_2.18.0 blob_1.2.0 magrittr_1.5

[33] gplots_3.0.1.1 matrixStats_0.55.0 backports_1.1.5 htmltools_0.4.0

[37] xtable_1.8-4 BiocStyle_2.15.0 KernSmooth_2.23-16 stringi_1.4.3

[41] slam_0.1-46 crayon_1.3.4

20

	1 Introduction
	2 Installing the cellTree package
	3 Preparing the Gene Expression Data Input
	4 Fitting LDA Model
	4.1 Using Latent Dirichlet Allocation for Gene Expression Data
	4.2 Choosing the Number of Topics
	4.3 Computing LDA Model Fit

	5 Building a Backbone Tree
	6 Gene Set Enrichment with Gene Ontologies
	7 Result Summary
	8 Session Info

