DESCRIPTION:

ASTRAL is a java program for estimating a species tree given a set of unrooted gene trees. ASTRAL is
statistically consistent under multi-species coalescent model (and thus is useful for handling ILS). The
optimization problem solved by ASTRAL seeks to find the tree that maximizes the number of induced
quartet trees in gene trees that are shared by the species tree. The optimization problem is solved exactly
for a constrained version of the problem that restricts the search space. An exact solution to the
unconstrained version is also implemented and can run on small datasets (less than 18 taxa).

The original ASTRAL algorithm is described in:

e Mirarab, Siavash, Rezwana Reaz, Md. Shamsuzzoha Bayzid, Theo Zimmermann, M Shel Swenson,
and Tandy Warnow. “ASTRAL: Genome-Scale Coalescent-Based Species Tree.” Bioinformatics 30,
no. 17 (2014): i541-i548. doi:10.1093/bioinformatics/btu462.

The current version of the ASTRAL code corresponds to the algorithm called ASTRAL-II and is described
in:

e Mirarab, Siavash, Tandy Warnow. “ASTRAL-II: Coalescent-Based Species Tree Estimation with Many
Hundreds of Taxa and Thousands of Genes.”. Bioinformatics (ISMB special issue) 31, no. 12 (2015):

i44-i52. doi:10.1093/bioinformatics/btv234

Since version 4.10.0, ASTRAL can also compute branch length (in coalescent units) and a measure of
support called “local posterior probability”, described here:

e Sayyari Erfan, Mirarab Siavash. Fast coalescent-based computation of local branch support from
quartet frequencies. Molecular Biology and Evolution (2016). doi:10.1093/molbev/msw079

For more details, refer to the chapter 5 of Siavash's dissertation.

Email: astral-users@googlegroups.com for questions. Please subscribe to the mailing list for infrequent
updates.

Tutorial Steps:

INSTALLATION:

There is no installation required to run ASTRAL. You simply need to download the zip file and extract the
contents to a folder of your choice. Alternatively, you can clone the GitHub repository if you are familiar
with git. If you clone the git repository, you can run make.sh to build the project, or simply use the jar file
that is included with the repository.
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http://bioinformatics.oxfordjournals.org/content/31/12/i44
http://mbe.oxfordjournals.org/content/early/2016/05/12/molbev.msw079.short?rss=1
https://repositories.lib.utexas.edu/bitstream/handle/2152/31377/MIRARABBAYGI-DISSERTATION-2015.pdf
https://github.com/smirarab/ASTRAL/raw/master/Astral.4.10.6.zip
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ASTRAL is a java-based application, and should run in any environment (Windows, Linux, Mac, etc.) as
long as java is installed. java 1.5 or later is required. We have tested ASTRAL only on Linux and MAC, but
it should work on Windows too.

In the remaining of the tutorial, we will assume you have extracted the ASTRAL zip file into a directory with
the path ~/astral-home/ . In the commands given below, substitute ~/astral-home/ with the directory you
have chosen for ASTRAL.

Running ASTRAL from command-line to see the help:

ASTRAL currently has no GUI. You need to run it through command-line. Open a terminal (on Windows,
look for a program called command Prompt and run that; on Linux you should know how to do this; on MAC,
search for an application called Terminal ). Once the terminal opens, go the location where you have
downloaded the software (e.g. using cd ~/astral-home/ ), and issue the following command:

java -jar astral.5.5.1.jar

This will print the list of options available in ASTRAL. If no errors are printed, your ASTRAL installation is
fine and you can proceed to the next sections.

Running ASTRAL on a sample input dataset

We will next run ASTRAL on an input dataset. From the ASTRAL directory, run:

java -jar astral.5.5.1.jar -i test_data/song_mammals.424.gene.tre

The results will be outputted to the standard output. To save the results in an output file use the -o
option:

java -jar astral.5.5.1.jar -i test_data/song_mammals.424.gene.tre -o test_data/song_mammals.tre

Here, the main input is just a file that contains all the input gene trees in Newick format. The input gene
trees are treated as unrooted, whether or not they have a root. Note that the output of ASTRAL should
also be treated as an unrooted tree.

The test file that we are providing here is based on the Song et. al. dataset of 37 mammalian species and
442 genes. We have removed 23 problematic genes (21 mislabeled genes and 2 genes we classified as
outliers) and we have also re-estimated gene trees using RAXML on the alignments that authors of that
paper kindly provided to us.

The input gene trees can have polytomies (unresolved branches) since version 4.6.0. However, be aware
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CHANGELOG.md

that the use of unresolved gene trees can increase the running time, especially when the input gene trees
have many high degree multifurcations.

Viewing results of ASTRAL.:

The output of ASTRAL is a tree in Newick format. These trees can be viewed in many existing tools. Here
are some that are used by many people:

1. FigTree is probably the most widely used tool. It produces nice looking figures and works under
Linux, Windows, and MAC.

2. Archaeopteryx is very good for viewing large trees and also works under all three operating systems.

3. EvolView: online application. You don't even need to download.

There are many more tools.

For this tutorial, let's use the online viewer (EvolView) or any other tool you can manage to download and
install. Using either of these applications open the test_data/song_mammals.tre file. We will explore various
tree viewing options. Importantly, we will reroot the tree at the correct node, which is always necessary,
since the rooting of the ASTRAL trees is arbitrary and meaningless.

Branch length and support

ASTRAL measures branch length in coalescent units and also has a fast way of measuring support
without a need for bootstrapping. The algorithms to compute branch lengths and support and the
meaning of support outputted is further described in the paper mentioned above. We will return to these in
later sections. Some points have to be emphasized:

o ASTRAL only estimates branch lengths for internal branches and not terminal branches.

e Branch lengths are in coalescent units and are a direct measure of the amount of discordance in the
gene trees. As such, they are prone to underestimation because of statistical noise in gene tree
estimation.

e Branch support values measure the support for a quadripartition (the four clusters around a branch)
and not the bipartition, as is commonly done.

The ASTRAL Log information

ASTRAL outputs lots of useful informations to your screen (stderr really). You can capture these
information by directing your stderr to a file. Capturing the log is highly recommended. Here is how you
would capture stderr:

java -jar astral.5.5.1.jar -i test_data/song_mammals.424.gene.tre -o test_data/song_mammals.tre 2> song
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Here are some of the important information captured in the log:
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o Number of taxa, and their names. Double check these to make sure they are correct

o Number of genes.

e Version of ASTRAL used in your analysis

e The normalized quartet score (proportion of input gene tree quartet trees satisfied by the species
tree). This is a number between zero and one; the higher this number, the less discordant your gene
trees are.

e The final optimization score is similar to the above number, but is not normalized (the number of gene
tree quartets satisfied by the species tree)

¢ Running time

e More advanced logs show the size of the search space in terms of the number of clusters and
number of tripartitions (i.e., elements weighted). Note that for challenging datasets (not this
mammalian dataset) the search space grows using heuristics implemented in ASTARL. We will get
back to this.

Running on larger datasets:

We will now run ASTRAL on a relatively large dataset. Run:

java -jar astral.5.5.1.jar -i test_data/100-simulated-boot

The input file here is a simulated dataset with 100 sequences and 100 replicates of bootstrapped gene
trees for 25 loci (thus 2,500 input trees). Note that ASTRAL finishes on this dataset in a matter of seconds.

A larger real dataset from the 1kp dataset is also included. This dataset includes 424 genes from 103
species. Run:

java -jar astral.5.5.1.jar -i test_data/1KP-genetrees.tre -o test_data/lkp.tre

This takes about a minute to run on a powerful laptop. On this dataset, notice in the ASTRAL log
information that it originally starts with 11043 clusters in its search space, and using heuristics
implemented in ASTRAL-II, it increases the search space slightly to 11085 clusters. For more challenging
datasets (i.e., more discordance or fewer genes) this number might increase a lot.

Scoring a species tree

You can use the -q option in ASTRAL to score an existing species tree to produce its quartet score,
compute its branch lengths, and compute its ASTRAL branch support values. The ASTRAL score is the
fraction of the induced quartet trees in the input set that are in the species tree. So, a score of 8.9 would
mean that 90% of the quartet trees induced by your gene trees are in your species tree.

To score a tree using ASTRAL, run:
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java -jar astral.5.5.1.jar -q test_data/simulated_l4taxon.default.tre -i test_data/simulated_1l14taxon.ge
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This will score the species tree given in test_data/simulated_l4taxon.default.tre compared to the gene

trees given in test_data/simulated_l4taxon.gene.tre . It Will output:

Quartet score is: 4803
Normalized quartet score is: ©.4798201798201798

This means 4803 induced quartet trees from the gene trees are in the species tree, and these 4803
quartets are 47.98% of all the quartet trees that could be found in the species tree. As mentioned before,
this dataset is one with a very high ILS level.

In addition to giving an overall score, when you score a tree, branch lengths and branch support are also
computed and outputted. In the next section, we will introduce ways to output even more information per
branch.

When scoring a tree, you probably want to capture the stderr using 2>name_of_a_file technique described
before.

Extensive branch annotations

Where you are inferring a species tree or scoring one using the -q option, you will always get estimates of
the branch length and local posterior support for each branch. In addition to these default annotations for
each branch, you can ask ASTRAL to output other per branch information.

Around each branch in an unrooted tree, there are four groups. If you think about a rooted tree, the four
groups defined by a branch are the first child ( L ), the second child (r ), the sister group (s ), and
everything else (o). With these four groups, if keep all the groups intact, we can have three unrooted
topologies: RL|s0, RS|LO, and Ro|Ls . The first topology is what the current tree has, and we refer it to as
the main topology. The two others are alternative topologies, and we refer to rs|Lo and Rro|Ls as the first
and the second alternatives, respectively. ASTRAL can output not just the local posterior probability for
the main tree, but also the two alternatives.

To enable extra per branch information, you need to use the -t option. Here is a description of various
information that can be turned on by using -t .

e no annotations ( -t e): If you hate our posteriors and cannot stand seeing them, you can use this
option turn them off. If our calculations are causing numerical errors you can use this to at least get
the topology.

e Quartet support ( -t 1): The local posterior probabilities are computed based on a transforation of the
percentage of quartets in gene trees that agree or disagree with a branch. See Figure 2 of our MBE



paper referenced above for the relationship. If you want to know what percentage of quartets in your
gene trees agree with a branch, use this option. We refer to this measure as the quartet support.
Quartet score is a good way of measuring the amount of gene tree conflict around a branch.

e Alternative posteriors ( -t 4): When this option is used, ASTRAL outputs three local posterior
probabilities: one for the main topology, and one for each of the two alternatives (rRs|Lo and Rro|LS , in
that order). The posterior of the three topologies adds up to one. This is because of our locality
assumption, which basically asserts that we assume the four groups around the branch (L, Rr, s,
and o) are each correct and therefore, there are only three possible alternatives.

e Full annotation ( -t 2 ): When you use this option, for each branch you get a lot of different
measurements:

o g1, q2, q3: these three values show quartet support (as defined in the description of -t 1) for
the main topology, the first alternative, and the second alternative, respectively.

o f1, f2, f3:these three values show the total number of quartet trees in all the gene trees that
support the main topology, the first alternative, and the second alternative, respectively.

o ppl, pp2, pp3:these three show the local posterior probabilities (as defined in the description of

-t 4) for the main topology, the first alternative, and the second alternative, respectively.

o Qc : this shows the total number of quartets defined around each branch (this is what our paper
calls m).

o EN: this is the effective number of genes for the branch. If you don't have any missing data, this
would be the number of branches in your tree. When there is missing data, some gene trees
might have nothing to say about a branch. Thus, the effective number of genes might be smaller
than the total number of genes.

o Alternative quartet topologies ( -t 8): Outputs q1, g2, g3 ;these three values show quartet support
(as defined in the description of -t 1) for the main topology, the first alternative, and the second
alternative, respectively.

Run:

java -jar astral.5.5.1.jar -q test_data/lkp.tre -i test_data/1KP-genetrees.tre -t 2 -o test_data/1lkp-sc
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java -jar astral.5.5.1.jar -q test_data/lkp.tre -i test_data/1KP-genetrees.tre -t 4 -o test_data/1lkp-sc

Kl i

java -jar astral.5.5.1.jar -q test_data/lkp.tre -i test_data/1KP-genetrees.tre -t 8 -o test_data/1lkp-sc

Kl il

read all the values given for a couple of branches and try to make sense of them.

Prior hyper-parameter



Our calculations of the local posterior probabilities and branch lengths use a Yule prior model for the
branch lengths of the species tree. The speciation rate (in coalescent units) of the Yule process (lambda) is
by default set to 0.5, which results in a flat prior for the quartet frequencies in the [1/3,1] range. Using -
c option one can adjust the hyper-parameter for the prior. For example, you might want to estimate
lambda from the data after one run and plug the estimate prior in a subsequent run. We have not yet fully
explored the impact of lambda on the posterior. For branch lengths, lambda acts as a pseudocount and
can have a substantial impact on the estimated branch length for very long branches. More specifically, if
there is no, or very little discordance around a branch, the MAP lengths of the branch (which is what we
report) is almost fully determined by the prior.

Run the following two commands and compare the lengths of the longest branches:

java -jar astral.5.5.1.jar -q test_data/lkp.tre -i test_data/1KP-genetrees.tre -c 2 -o test_data/lkp-sc
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java -jar astral.5.5.1.jar -q test_data/lkp.tre -i test_data/1KP-genetrees.tre -c 0.001 -o test_data/1k

Kl | 2

Note that setting lambda to O results in reporting ML estimates of the branch lengths instead of MAP.

However, for branches with no discordance, we cannot compute a branch lengths. For these, we currently
arbitrarily set ML to 10 coalescent units (we might change this in future versions).

Multi-locus Bootstrapping:

Recent versions of ASTRAL output a branch support value even without bootstrapping. Our analyses have
revealed that this form of support is more reliable than bootstrapping under conditions we have compared
the two methods. Nevertheless, you may want to run bootstrapping as well.

Astral can perform multi-locus bootstrapping (Seo, 2008). To be able to perform multi-locus
bootstrapping, ASTRAL needs to have access to bootstrap replicates for each gene. To start multi-locus
bootstrapping using ASTRAL, you need to provide the location of all gene tree bootstrap replicates. To run
bootstrapping on our test input files,

e goto test_data directory, and

e decompress the file called song_mammals.424genes.bs-trees.zip .
e Now run:

java -jar ../astral.5.5.1.jar -i song_mammals.424.gene.tre -b bs-files

This will run 100 replicates of bootstrapping. The argument after -i (here song_mammals.424.gene.tre)
contains all the maximum likelihood gene trees (just like the case where bootstrapping was not used). The
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-b option tells ASTRAL that bootstrapping needs to be performed. Following -b is the name of a file
(here bs-files ) that contains the location of gene tree bootstrap files, one line per gene. For example, the
first line is 424genes/100/raxmlboot.gtrgamma/RAXML_bootstrap.allbs , which tells ASTRAL that the gene tree
bootstrap replicates of the first gene can be found in a file called
424genes/100/raxmlboot.gtrgamma/RAXML_bootstrap.allbs .

By default, ASTRAL performs 100 bootstrap replicates, but the -r option can be used to perform any
number of replicates. For example,

java -jar ../astral.5.5.1.jar -i song_mammals.424.gene.tre -b bs-files -r 150

will do 150 replicates. Note that your input gene tree bootstrap files need to have enough bootstrap
replicates for the number of replicates requested using -r . For example, if you have -r 150, each file
listed in bs-files should contain at least 150 bootstrap replicates.

Gene+site resampling: ASTRAL performs site-only resampling by default (see Seo, 2008). ASTRAL can
also perform gene+site resampling, which can be activated with the -g option:

java -jar ../astral.5.5.1.jar -i song_mammals.424.gene.tre -b bs-files -g -r 100

Note that when you perform gene/site resampling, you need more gene tree replicates than the number of
multi-locus bootstrapping replicates you requested using -r . For example, if you have -g -r 100, you
might need 150 replicates for some genes (and less than 100 replicates for other genes). This is because
when genes are resampled, some genes will be sampled more often than others by chance.

Gene-only resampling: ASTRAL can also perform gene-only bootstrapping using the --gene-only option.
This form of bootstrapping requires only one input file, which is given using -i . Thus, for this, you don't
need to use -b. The following performs bootstrapping by resampling genes in the input file:

java -jar ../astral.5.5.1.jar -i song_mammals.424.gene.tre --gene-only

Finally, since bootstrapping involves a random process, a seed number can be provided to ASTRAL to
ensure reproducibility. The seed number can be set using the -s option (by default 692 is used).

Output:

As ASTRAL performs bootstrapping, it outputs the bootstrapped ASTRAL tree for each replicate. So, if the
number of replicates is set to 100, it first outputs 100 trees. Then, it outputs a greedy consensus of all the
100 bootstrapped trees (with support drawn on branches). Finally, it performs the main analysis (i.e. on
trees provided using -i option) and draws branch support on this main tree using the bootstrap
replicates. Therefore, in this example, the output file will include 102 trees. The most important tree is the
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tree outputted at the end; this is the ASTRAL tree on main input trees, with support values drawn based
on bootstrap replicates. Support values are shown as branch length (i.e. after a colon sign) and are
percentages (as opposed to local posterior probabilities that when present are shown as a number
between 0 and 1).

The exact version of ASTRAL

ASTRAL has an exact and a heuristic version. The heuristic version solves the optimization problem
exactly subject to the constraint that all the bipartitions in the species tree should be present in at least
one of the input gene trees, or in a set of some other bipartitions that (since version 4.5.1) ASTRAL
automatically infers from the set of input gene trees as likely bipartitions in the species tree. The
constrained version of ASTRAL is the default. However, when you have a small number of taxa (typically
17 taxa or less), the exact version of ASTRAL can also run in reasonable time (see the figure below).
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Since the mammalian dataset we have used so far has 37 taxa, the exact version cannot run on it.
However, we have created a subset of this dataset that has all 9 primates, tree shrew, rat, rabbit, horse,
and the sloth (a total of 14 taxa). We can run the exact version of ASTRAL on this reduced dataset. Run:

java -jar astral.5.5.1.jar -i test_data/song_primates.424.gene.tre -o test_data/song_primates.424.exact

Kl =l

Using the -x option results in running the exact version of the ASTRAL algorithm. This run should finish in
about 30 seconds. Now, we will run ASTRAL on the same input using the default heuristic algorithm:



CHANGELOG.md

java -jar astral.5.5.1.jar -i test_data/song_primates.424.gene.tre -o test_data/song_primates.424.defaL

Kl =l

This time, ASTRAL finished in under a second. So, is there a difference between the output of the exact
and the heuristic version? Open up the two trees in your tree viewer tool and compare them. You will
notice they are identical. You could also compare the scores outputted by ASTRAL and notice that they

are identical.

Example where exact helps

The default primate dataset we used in the previous step had 424 genes and 14 taxa. Since we have a
relatively large number of gene trees, we could reasonably expect the exact and heuristic versions to
generate identical output. The key point here is that as the number of genes increases, the probability that
each bipartition of the species tree appears in at least one input gene tree increases. Thus, with 424 genes
all bipartitions from the species tree are in at least one input gene tree, and therefore, the exact and the
heuristic versions are identical.

We tried hard to find a subset of genes in the biological primates dataset where the exact and the heuristic
versions did not match. We couldn't! So we had to resort to simulations. We simulated a 14-taxon dataset
with extreme levels of ILS (average 87% RF between gene trees and the species tree). Now, with this
simulated dataset, if you take only 10 genes, something interesting happens.

Run

java -jar astral.5.5.1.jar -i test_data/simulated_14taxon.gene.tre -o test_data/simulated_14taxon.defaL
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and then

java -jar astral.5.5.1.jar -i test_data/simulated_l4taxon.gene.tre -o test_data/simulated_l4taxon.exact

Kl el

Now you see that the tree outputted by the exact version has a slightly higher score (4812=48.07% versus
4803=47.98%), and a slightly different topology compared to the heuristic version. Thus, in extreme cases
(i.e. lots of ILS and/or gene tree estimation error and few available gene trees compared to the number of
taxa), one could observe differences between the exact and heuristic versions. Note that how many genes
should be considered few depends on the number of taxa you have, and also how much missing data

there is.

The main point of our ASTRAL-II work is to make the heuristic version as close to the exact version as
possible. We have tested the heuristic version and a condition similar to the exact condition in our
ASTRAL-Il paper and have observed no real differences. Thus, we believe the ASTRAL-II heuristics do a



very good job of searching the tree space. But when the exact version can be run, there is no reason not
to.

Step 7: Providing ASTRAL with extra trees:

We always have another option for increasing the search space. Imagine that you are able to create a set
of hypothetical trees using various methods. For example, maybe you have a prior hypothesis of what the
species tree could be. Or, maybe you have run concatenation and have potential species trees. Most
realistically, maybe you have a collection of bootstrapped gene trees that can be used. ASTRAL allows
you to provide these sets of alternative trees to expand the space of that ASTRAL considers. Thus,
ASTRAL will solve the optimization problem subject to the constraint that each bipartition should come
either from one of the input gene trees, or the ones it infers automatically, or these "extra" gene trees. The
extra gene trees, however, do not contribute to the calculation of the score, which is always computed
against input gene trees. They just control the space being searched.

Since ASTRAL-II (version 4.7.2), we have reduced the need for adding extra trees, unless the number of
input trees is extremely small. Nevertheless, if extra trees are available, adding them never hurts accuracy

and typically has minimal impact on running time.

To expand the search space, you can run:

java -jar astral.5.5.1.jar -i test_data/simulated_primates_5X.10.gene.tre -o test_data/simulated_primat
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Here, the -e option is used to input a set of extra trees that ASTRAL uses to expand its search space.

The file provided simply has 200 bootstrap replicates for each of the these 10 simulated genes.

Miscellaneous :

Automatic addition of bipartitions to the set x

The search space explored by ASTRAL is limited to bipartitions in a given set, which we call x . This
means that the accuracy of ASTRAL can be impacted by what is in the set x . ASTRAL-I (the algorithm
described in our 2014 paper) sets the set x to all bipartitions from the gene trees. This is a good start and
sufficient in many cases. However, in ASTRAL-Il, we have added several mechanisms to add extra
bipartitions to the set x . In our ASTRAL-II paper, we show that for the most challenging datasets, these
additions dramatically increase the accuracy of ASTRAL. We also show that these additions seem
sufficient, in the sense that adding bipartitions from the true species tree to the set does not further
improve the accuracy.

Some of the heuristics used in ASTRAL-II for the addition of extra bipartitions are explained below.

For a detailed description of these heuristics, see Section 5.2.3.2 of my dissertation chapter on ASTRAL.
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1. Completing gene trees: If the input tree has missing taxa, we use a built-in mechanism to first
complete those gene trees and then add bipartitions to x from the completed gene trees (note that
we use the original incomplete gene tree for score calculations). Our current implemented heuristic for
doing this is based on calculating the similarity between all pairs of taxa (measured as how often they
appear together on the same side of a quartet tree in induced gene trees) and using the four-point
condition to figure out where the taxon belongs in the gene tree. The algorithm is described in detail
on page 31 of my thesis chapter on ASTRAL.

2. Greedy-based addition: By default, we use an approach based on greedy consensus to find out
additional bipartitions and add them to the set x, regardless of whether input gene trees are
complete or not. In short, we first find the greedy consensus of the input gene trees at various
thresholds. For each polytomy in these consensus trees, we resolve the polytomy by randomly
sampling leaves from its pending branches and calculating the greedy consensus for gene trees
restricted to these random subsamples. We do this many times for each polytomy and add all the
induced new bipartitions. We also calculate a UPGMA resolution of the polytomy using our similarity
matrix and add the resulting bipartitions to set x . We also use the similarity matrix to add all possible
caterpillar resolutions of the polytomies according to the similarity matrix for some of the polytomies.

3. Similarity-based addition: By default, we also use our similarity matrix (also used for completing
trees) to add more bipartitions using a UPGMA tree.

4. Resolving unresolved gene trees: When input gene trees are unresolved, we use a strategy similar
to our Greedy-based addition strategy for inferring and adding extra bipartitions that effectively
resolve the polytomies. Once again, the score calculation is based on the unresolved tree, and these
additions only affect the set x.

Mechanisms 1 and 4 are always in place. Mechanisms 2 and 3 are by default activated, but you can turn
them off to increase speed (not recommended). To turn off these two features, use -p o . We do not
recommend -p @ option, because greedy-based additions could be quite important, and they typically
have a relatively small impact on the running time.

Memory:
For big datasets (say more than 100 taxa) increasing the memory available to java might be necessary.
Note that you should never give java more memory than what you have available on your machine. So, for

example, if you have 4GB of free memory, you can invoke ASTRAL using the following command to make
3GB available to java:

java -Xmx3000M -jar astral.5.5.1.jar -i in.tree

Other options:

e -m [a number] : removes genes with less that the specified number of leaves in them. Thus, this is
useful for requiring a certain level of taxon occupancy.
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e -k completed : To build the set X (and not to score the species tree), ASTRAL internally completes the
gene trees. To see these completed gene trees, run this option. This option is usable only when you
also have -o.

e -k bootstraps and -k bootstraps_norun : these options output the bootstrap replicate inputs to
ASTRAL. These are useful if you want to run ASTRAL separately on each bootstrap replicate on a
cluster.

e -k searchspace_norun : outputs the search space (constraint set X) and exits.
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